Loading…
Tamanoi Equation for Orbifold Euler Characteristics Revisited
Tamanoi equation is a Macdonald-type equation for the orbifold Euler characteristic and for its higher order analogs. It states that the generating series of fixed-order orbifold Euler characteristics of analogs of the symmetric powers for a space with a finite group action can be represented as a c...
Saved in:
Published in: | Proceedings of the Steklov Institute of Mathematics 2024-06, Vol.325 (1), p.111-119 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tamanoi equation is a Macdonald-type equation for the orbifold Euler characteristic and for its higher order analogs. It states that the generating series of fixed-order orbifold Euler characteristics of analogs of the symmetric powers for a space with a finite group action can be represented as a certain unified (explicitly written) power series raised to the power equal to the orbifold Euler characteristic of the same order of the space itself. In the paper, in particular, we explain how the Tamanoi equation follows from its verification for actions of (finite) groups on the one-point space. We generalize the statements used for this purpose to analogs of the orbifold Euler characteristic corresponding to finitely generated groups. We show that, for these generalizations, an analog of the Tamanoi equation does not hold in general. |
---|---|
ISSN: | 0081-5438 1531-8605 |
DOI: | 10.1134/S0081543824020068 |