Loading…

A hybrid approach for early-identification of at-risk dropout students using LSTM-DNN networks

Dropout refers to the phenomenon of students leaving school before completing their degree or program of study. Dropout is a major concern for educational institutions, as it affects not only the students themselves but also the institutions’ reputation and funding. Dropout can occur for a variety o...

Full description

Saved in:
Bibliographic Details
Published in:Education and information technologies 2024-10, Vol.29 (14), p.18839-18857
Main Authors: El Aouifi, Houssam, El Hajji, Mohamed, Es-Saady, Youssef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dropout refers to the phenomenon of students leaving school before completing their degree or program of study. Dropout is a major concern for educational institutions, as it affects not only the students themselves but also the institutions’ reputation and funding. Dropout can occur for a variety of reasons, including academic, financial, personal, and social factors. Therefore, understanding the factors that contribute to dropout and developing effective strategies to prevent it is a critical challenge for educational institutions. In this study, we propose a hybrid deep learning model based on Long Short-Term Memory and Deep Neural Network algorithms for school dropout prediction. The proposed model was compared with previous works and several other machine learning algorithms, including Deep Neural Network (DNN), K-Nearest Neighbors (KNN), Naive Bayes (NB), Multi-Layer Perceptron (MLP), Decision Trees (DT), Support Vector Machine (SVM), and Random Forest (RF). The results showed that the proposed DNN-LSTM model outperforms the other models in terms of accuracy and efficiency.
ISSN:1360-2357
1573-7608
DOI:10.1007/s10639-024-12588-0