Loading…
Exponential decay for the quintic wave equation with locally distributed damping
We study the stabilization and the well-posedness of solutions of the quintic wave equation with locally distributed damping. The novelty of this paper is that we deal with the difficulty that the main equation does not have good nonlinear structure amenable to a direct proof of a priori bounds and...
Saved in:
Published in: | Mathematische annalen 2024-12, Vol.390 (4), p.6187-6212 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the stabilization and the well-posedness of solutions of the quintic wave equation with locally distributed damping. The novelty of this paper is that we deal with the difficulty that the main equation does not have good nonlinear structure amenable to a direct proof of a priori bounds and a desirable observability inequality. It is well known that observability inequalities play a critical role in characterizing the long time behaviour of solutions of evolution equations, which is the main goal of this study. In order to address this, we approximate weak solutions for regular solutions for which it is possible to obtain a priori bounds and prove the essential observability inequality. The treatment of these approximate solutions is still a challenging task and requires the use of Strichartz estimates and some microlocal analysis tools such as microlocal defect measures. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-024-02904-x |