Loading…
Scaling Laws and Convergence Dynamics in a Dissipative Kicked Rotator
The kicked rotator model is an essential paradigm in nonlinear dynamics, helping us understand the emergence of chaos and bifurcations in dynamical systems. In this study, we analyze a two-dimensional kicked rotator model considering a homogeneous and generalized function approach to describe the co...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The kicked rotator model is an essential paradigm in nonlinear dynamics, helping us understand the emergence of chaos and bifurcations in dynamical systems. In this study, we analyze a two-dimensional kicked rotator model considering a homogeneous and generalized function approach to describe the convergence dynamics towards a stationary state. By examining the behavior of critical exponents and scaling laws, we demonstrate the universal nature of convergence dynamics. Specifically, we highlight the significance of the period-doubling bifurcation, showing that the critical exponents governing the convergence dynamics are consistent with those seen in other models. |
---|---|
ISSN: | 2331-8422 |