Loading…

Explainable Histopathology Image Classification with Self-organizing Maps: A Granular Computing Perspective

The automatic analysis of histology images is an open research field where machine learning techniques and neural networks, especially deep architectures, are considered successful tools due to their abilities in image classification. This paper proposes a granular computing methodology for histopat...

Full description

Saved in:
Bibliographic Details
Published in:Cognitive computation 2024-11, Vol.16 (6), p.2999-3019
Main Authors: Amato, Domenico, Calderaro, Salvatore, Lo Bosco, Giosué, Rizzo, Riccardo, Vella, Filippo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The automatic analysis of histology images is an open research field where machine learning techniques and neural networks, especially deep architectures, are considered successful tools due to their abilities in image classification. This paper proposes a granular computing methodology for histopathological image classification. It is based on embedding tiles of histopathology images using deep metric learning, where a self-organizing map is adopted to generate the granular structure in this learned embedding space. The SOM enables the implementation of an explainable mechanism by visualizing a knowledge space that the experts can use to analyze and classify the new images. Additionally, it provides confidence in the classification results while highlighting each important image fragment, with the benefit of reducing the number of false negatives. An exemplary case is when an image detail is indicated, with small confidence, as malignant in an image globally classified as benign. Another implemented feature is the proposal of additional labelled image tiles sharing the same characteristics to specify the context of the output decision. The proposed system was tested using three histopathology image datasets, obtaining the accuracy of the state-of-the-art black-box methods based on deep learning neural networks. Differently from the methodologies proposed so far for the same purpose, this paper introduces a novel explainable method for medical image analysis where the advantages of the deep learning neural networks used to build the embedding space for the image tiles are combined with the intrinsic explainability of the granular process obtained using the clustering property of a self-organizing map.
ISSN:1866-9956
1866-9964
DOI:10.1007/s12559-024-10312-1