Loading…

A Method to Extract Image Features and Lineaments Based on a Multi-hillshade Continuous Wavelet Transform

This paper presents a new method for extracting the image features and lineaments related to local extrema of an image or a digital elevation model (DEM) such as ridges and valleys based on the continuous wavelet transform (CWT) of a set of variously illuminated hillshades. The method originates fro...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical geosciences 2024-11, Vol.56 (8), p.1697-1720
Main Authors: Song, Man Hyok, Ho, Jin Gyong, Kim, Chol, Chol, Yong O., Lyu, Song
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a new method for extracting the image features and lineaments related to local extrema of an image or a digital elevation model (DEM) such as ridges and valleys based on the continuous wavelet transform (CWT) of a set of variously illuminated hillshades. The method originates from the principle that a hillshade can exactly reflect the lineaments nearly perpendicular to the illumination direction of the hillshade, but not other ones. The method consists of four steps: (1) preparation of a set of differently illuminated hillshades of the input data, (2) detection of directional edges nearly perpendicular to the illumination direction from each hillshade based on the CWT, (3) a combination of multidirectional edges into an omnidirectional feature image, and (4) identification of lineaments through linkage and linearization of image feature lines. CWT coefficients of each hillshade are used to calculate the gradient and its direction of the hillshade. For each hillshade, directional edge pixels where the gradient direction is parallel to the illumination direction are selectively detected to form accurate and solitary image feature lines related to local extrema of the input data. Directional edges of each hillshade are easily classified into positive and negative edges using the hillshade gradient. As they have similar directions, they are easily linked to form longer line raster objects, which are converted into vector objects, that is, directional lineaments. The multidirectional edges and lineaments given from all the hillshades are combined to form an omnidirectional feature image and a group of omnidirectional lineaments. Its application to real DEMs shows the demonstrated advantages of the proposed method over other methods and the similarity between detected lineaments and fault lines in the study area.
ISSN:1874-8961
1874-8953
DOI:10.1007/s11004-024-10146-5