Loading…

Antifungal activity of Bacillus velezensis and Pseudomonas azotoformans isolated from compost tea against anthracnose (Colletotrichum spp.) on strawberry fruit

Anthracnose, caused by Colletotrichum spp., is a threat to strawberry production globally. Unlike their chemical counterparts, microbial biofungicides offer a method of postharvest fungal disease control that is safe, sustainable and less affected by pathogen resistance. The present study evaluated...

Full description

Saved in:
Bibliographic Details
Published in:Plant pathology 2024-12, Vol.73 (9), p.2419-2428
Main Authors: Popescu, Irina, Loganathan, A. Kiripuvaney, Graham, Hailey R., Avis, Tyler J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anthracnose, caused by Colletotrichum spp., is a threat to strawberry production globally. Unlike their chemical counterparts, microbial biofungicides offer a method of postharvest fungal disease control that is safe, sustainable and less affected by pathogen resistance. The present study evaluated the antifungal effects of three bacteria, Bacillus velezensis strains SH1 and SH2 and Pseudomonas azotoformans strain SH3, obtained from sheep manure compost tea. The bacteria or their cell‐free filtrates were tested against Colletotrichum acutatum and Colletotrichum gloeosporioides in bioassays and against strawberry anthracnose. In addition, precipitated or extracted extracellular fractions were tested to determine the effects on membrane permeability of Colletotrichum spp. spores. Confrontation assay results showed all bacteria inhibited mycelial growth, with B. velezensis SH1 and P. azotoformans SH3 being the most effective. All cell‐free filtrates inhibited mycelial growth with B. velezensis SH1 and SH2 resulting in the highest inhibition. The bacteria suppressed anthracnose lesions on strawberry fruit although effective treatments varied by causal mould. B. velezensis SH1 and SH2 significantly permeabilized spore membranes, indicating antibiosis as a possible mode of action. Investigation into antimicrobial compound production found various homologues of the lipopeptides fengycin, iturin and surfactin were produced by B. velezensis SH1 and SH2. Results suggest that lipopeptides produced by B. velezensis strains permeabilize Colletotrichum cell membranes, and that fengycins were the most inhibitory of the lipopeptides against Colletotrichum spp. Compost tea bacteria provide antifungal activity against strawberry anthracnose (Colletotrichum spp.) with differential effects of antimicrobial compounds on fungal cell permeability.
ISSN:0032-0862
1365-3059
DOI:10.1111/ppa.13983