Loading…
Existence and multiplicity of solutions to perturbed Δα1,β1α,β-Laplacian system in RN involving critical nonlinearity
In this article, we consider a Δ α 1 , β 1 α , β -Laplacian system with critical nonlinearity in R N - ε 2 Δ α 1 , β 1 α , β u + b ( X ) u = g ( X ) | u | 2 ~ ∗ - 2 u + F u ( X , u , v ) , X ∈ R N , - ε 2 Δ α 1 , β 1 α , β v + b ( X ) v = g ( X ) | v | 2 ~ ∗ - 2 v + F v ( X , u , v ) , X ∈ R N , u (...
Saved in:
Published in: | Rendiconti del Circolo matematico di Palermo 2024, Vol.73 (7), p.2749-2765 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, we consider a
Δ
α
1
,
β
1
α
,
β
-Laplacian system with critical nonlinearity in
R
N
-
ε
2
Δ
α
1
,
β
1
α
,
β
u
+
b
(
X
)
u
=
g
(
X
)
|
u
|
2
~
∗
-
2
u
+
F
u
(
X
,
u
,
v
)
,
X
∈
R
N
,
-
ε
2
Δ
α
1
,
β
1
α
,
β
v
+
b
(
X
)
v
=
g
(
X
)
|
v
|
2
~
∗
-
2
v
+
F
v
(
X
,
u
,
v
)
,
X
∈
R
N
,
u
(
X
)
,
v
(
X
)
→
0
as
|
X
|
→
∞
,
where
Δ
α
1
,
β
1
α
,
β
is the subelliptic operator of the type
Δ
α
1
,
β
1
α
,
β
:
=
Δ
x
+
Δ
y
+
x
2
α
y
2
β
x
α
1
+
y
β
1
2
Δ
z
;
x
∈
R
N
1
;
y
∈
R
N
2
,
z
∈
R
N
3
;
N
=
N
1
+
N
2
+
N
3
,
α
,
β
,
α
1
,
β
1
≥
0
,
N
~
:
=
N
1
+
N
2
+
N
3
(
1
+
α
+
α
1
+
β
+
β
2
)
,
2
~
∗
=
2
N
~
/
(
N
~
-
2
)
,
X
=
(
x
,
y
,
z
)
,
(
N
~
>
2
)
.
Under some proper conditions, we obtain the existence of standing wave solutions
(
u
ε
,
v
ε
)
which tend to the trivial solutions as
ε
→
0
. Moreover, we get
m
pairs of solutions for the above system under some extra assumptions. Our results improve and supplement some existing relevant results. |
---|---|
ISSN: | 0009-725X 1973-4409 |
DOI: | 10.1007/s12215-024-01070-y |