Loading…
SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach
Multimodal foundation models (MFMs) represent a significant advancement in artificial intelligence, combining diverse data modalities to enhance learning and understanding across a wide range of applications. However, this integration also brings unique safety and security challenges. In this paper,...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multimodal foundation models (MFMs) represent a significant advancement in artificial intelligence, combining diverse data modalities to enhance learning and understanding across a wide range of applications. However, this integration also brings unique safety and security challenges. In this paper, we conceptualize cybersafety and cybersecurity in the context of multimodal learning and present a comprehensive Systematization of Knowledge (SoK) to unify these concepts in MFMs, identifying key threats to these models. We propose a taxonomy framework grounded in information theory, evaluating and categorizing threats through the concepts of channel capacity, signal, noise, and bandwidth. This approach provides a novel framework that unifies model safety and system security in MFMs, offering a more comprehensive and actionable understanding of the risks involved. We used this to explore existing defense mechanisms, and identified gaps in current research - particularly, a lack of protection for alignment between modalities and a need for more systematic defense methods. Our work contributes to a deeper understanding of the security and safety landscape in MFMs, providing researchers and practitioners with valuable insights for improving the robustness and reliability of these models. |
---|---|
ISSN: | 2331-8422 |