Loading…
Triangular matrix categories over quasi-hereditary categories
In this paper, we prove that the lower triangular matrix category $\Lambda =\left [ \begin{smallmatrix} \mathcal{T}&0\\ M&\mathcal{U} \end{smallmatrix} \right ]$ , where $\mathcal{T}$ and $\mathcal{U}$ are $\textrm{Hom}$ -finite, Krull–Schmidt $K$ -quasi-hereditary categories and $M$ is an $...
Saved in:
Published in: | Glasgow mathematical journal 2024-09, Vol.66 (3), p.449-470 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we prove that the lower triangular matrix category
$\Lambda =\left [ \begin{smallmatrix} \mathcal{T}&0\\ M&\mathcal{U} \end{smallmatrix} \right ]$
, where
$\mathcal{T}$
and
$\mathcal{U}$
are
$\textrm{Hom}$
-finite, Krull–Schmidt
$K$
-quasi-hereditary categories and
$M$
is an
$\mathcal{U}\otimes _K \mathcal{T}^{op}$
-module that satisfies suitable conditions, is quasi-hereditary. This result generalizes the work of B. Zhu in his study on triangular matrix algebras over quasi-hereditary algebras. Moreover, we obtain a characterization of the category of the
$_\Lambda \Delta$
-filtered
$\Lambda$
-modules. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089524000053 |