Loading…
Submerged Membrane Bioreactor Configurations for Biological Nutrient Removal from Urban Wastewater: Experimental Tests and Model Simulation
Pilot-scale experimental measurements and simulations were utilised to evaluate the nutrient removal efficiency of three submerged membrane bioreactor designs. This study compared setups with post- and pre-denitrification processes. A 625 L pilot plant for treating primary effluent provided the oper...
Saved in:
Published in: | Environments (Basel, Switzerland) Switzerland), 2024-11, Vol.11 (11), p.260 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pilot-scale experimental measurements and simulations were utilised to evaluate the nutrient removal efficiency of three submerged membrane bioreactor designs. This study compared setups with post- and pre-denitrification processes. A 625 L pilot plant for treating primary effluent provided the operational data necessary for calibrating the activated sludge model, specifically for chemical oxygen demand and nitrogen removal under steady-state flow. Identical influent conditions were maintained for all configurations while varying the sludge retention times (from 5 to 100 d), hydraulic retention times (ranging from 4 to 15 h), return activated sludge flow rates (between 0.1 and 3.0), and aerobic volume fractions (from 0.3 to 1.0). The pilot plant tests showed high COD and ammonia removal (above 90%) but moderate total nitrogen removal (above 70%). The simulation results successfully forecasted the effluent concentrations of COD and nitrogen for each configuration. There were noticeable variations in the kinetic parameters, such as mass transfer coefficients and biomass decay rates, related to the activated sludge model. However, increasing the sludge retention time beyond 20 d, hydraulic retention time beyond 8 h, return activated sludge rates above 2.0, or aerobic volume fractions beyond 0.4 did not significantly enhance nutrient removal. The post-denitrification setup showed a clear benefit in nitrogen removal but required a greater oxygen supply. |
---|---|
ISSN: | 2076-3298 2076-3298 |
DOI: | 10.3390/environments11110260 |