Loading…

Hybrid hyperinterpolation over general regions

We present an ℓ 2 2 + ℓ 1 -regularized discrete least squares approximation over general regions under assumptions of hyperinterpolation, named hybrid hyperinterpolation. Hybrid hyperinterpolation, using a soft thresholding operator and a filter function to shrink the Fourier coefficients approximat...

Full description

Saved in:
Bibliographic Details
Published in:Calcolo 2025-03, Vol.62 (1), Article 3
Main Authors: An, Congpei, Ran, Jiashu, Sommariva, Alvise
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-e67bcf42939d548530ce89804927286f0e125456d78a6c9191f3bce4421a92773
container_end_page
container_issue 1
container_start_page
container_title Calcolo
container_volume 62
creator An, Congpei
Ran, Jiashu
Sommariva, Alvise
description We present an ℓ 2 2 + ℓ 1 -regularized discrete least squares approximation over general regions under assumptions of hyperinterpolation, named hybrid hyperinterpolation. Hybrid hyperinterpolation, using a soft thresholding operator and a filter function to shrink the Fourier coefficients approximated by a high-order quadrature rule of a given continuous function with respect to some orthonormal basis, is a combination of Lasso and filtered hyperinterpolations. Hybrid hyperinterpolation inherits features of them to deal with noisy data once the regularization parameter and the filter function are well chosen. We derive L 2 errors in theoretical analysis for hybrid hyperinterpolation to approximate continuous functions with noise data on sampling points. Numerical examples illustrate the theoretical results and show that well chosen regularization parameters can enhance the approximation quality over the unit-sphere and the union of disks.
doi_str_mv 10.1007/s10092-024-00625-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3134326372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134326372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-e67bcf42939d548530ce89804927286f0e125456d78a6c9191f3bce4421a92773</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmPwBzhV4pzhOGnaHNEEDGkSFzhHXeuWTqMtTse0f0-gSNy42LL93rP0CXGtYKEAstsQq0MJaCSAxVQeTsRMKbQyNdqcihkA5DJezLm4CGEbx9TkZiYWq-OG2yp5Ow7EbTcSD_2uGNu-S_pP4qShjrjYJUxN3IVLcVYXu0BXv30uXh_uX5YruX5-fFrerWWJAKMkm23K2qDTrop_Ug0l5S4H4zDD3NZAClOT2irLC1s65VStNyUZg6qIkkzPxc2UO3D_sacw-m2_5y6-9Fppo9HqDKMKJ1XJfQhMtR-4fS_46BX4by5-4uIjF__DxR-iSU-mEMVdQ_wX_Y_rCxgzZEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134326372</pqid></control><display><type>article</type><title>Hybrid hyperinterpolation over general regions</title><source>Springer Nature</source><creator>An, Congpei ; Ran, Jiashu ; Sommariva, Alvise</creator><creatorcontrib>An, Congpei ; Ran, Jiashu ; Sommariva, Alvise</creatorcontrib><description>We present an ℓ 2 2 + ℓ 1 -regularized discrete least squares approximation over general regions under assumptions of hyperinterpolation, named hybrid hyperinterpolation. Hybrid hyperinterpolation, using a soft thresholding operator and a filter function to shrink the Fourier coefficients approximated by a high-order quadrature rule of a given continuous function with respect to some orthonormal basis, is a combination of Lasso and filtered hyperinterpolations. Hybrid hyperinterpolation inherits features of them to deal with noisy data once the regularization parameter and the filter function are well chosen. We derive L 2 errors in theoretical analysis for hybrid hyperinterpolation to approximate continuous functions with noise data on sampling points. Numerical examples illustrate the theoretical results and show that well chosen regularization parameters can enhance the approximation quality over the unit-sphere and the union of disks.</description><identifier>ISSN: 0008-0624</identifier><identifier>EISSN: 1126-5434</identifier><identifier>DOI: 10.1007/s10092-024-00625-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Approximation ; Continuity (mathematics) ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Operators (mathematics) ; Parameters ; Quadratures ; Regularization ; Theory of Computation</subject><ispartof>Calcolo, 2025-03, Vol.62 (1), Article 3</ispartof><rights>The Author(s) under exclusive licence to Istituto di Informatica e Telematica (IIT) 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-e67bcf42939d548530ce89804927286f0e125456d78a6c9191f3bce4421a92773</cites><orcidid>0000-0002-8902-8063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>An, Congpei</creatorcontrib><creatorcontrib>Ran, Jiashu</creatorcontrib><creatorcontrib>Sommariva, Alvise</creatorcontrib><title>Hybrid hyperinterpolation over general regions</title><title>Calcolo</title><addtitle>Calcolo</addtitle><description>We present an ℓ 2 2 + ℓ 1 -regularized discrete least squares approximation over general regions under assumptions of hyperinterpolation, named hybrid hyperinterpolation. Hybrid hyperinterpolation, using a soft thresholding operator and a filter function to shrink the Fourier coefficients approximated by a high-order quadrature rule of a given continuous function with respect to some orthonormal basis, is a combination of Lasso and filtered hyperinterpolations. Hybrid hyperinterpolation inherits features of them to deal with noisy data once the regularization parameter and the filter function are well chosen. We derive L 2 errors in theoretical analysis for hybrid hyperinterpolation to approximate continuous functions with noise data on sampling points. Numerical examples illustrate the theoretical results and show that well chosen regularization parameters can enhance the approximation quality over the unit-sphere and the union of disks.</description><subject>Approximation</subject><subject>Continuity (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Operators (mathematics)</subject><subject>Parameters</subject><subject>Quadratures</subject><subject>Regularization</subject><subject>Theory of Computation</subject><issn>0008-0624</issn><issn>1126-5434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwzAMhSMEEmPwBzhV4pzhOGnaHNEEDGkSFzhHXeuWTqMtTse0f0-gSNy42LL93rP0CXGtYKEAstsQq0MJaCSAxVQeTsRMKbQyNdqcihkA5DJezLm4CGEbx9TkZiYWq-OG2yp5Ow7EbTcSD_2uGNu-S_pP4qShjrjYJUxN3IVLcVYXu0BXv30uXh_uX5YruX5-fFrerWWJAKMkm23K2qDTrop_Ug0l5S4H4zDD3NZAClOT2irLC1s65VStNyUZg6qIkkzPxc2UO3D_sacw-m2_5y6-9Fppo9HqDKMKJ1XJfQhMtR-4fS_46BX4by5-4uIjF__DxR-iSU-mEMVdQ_wX_Y_rCxgzZEs</recordid><startdate>20250301</startdate><enddate>20250301</enddate><creator>An, Congpei</creator><creator>Ran, Jiashu</creator><creator>Sommariva, Alvise</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8902-8063</orcidid></search><sort><creationdate>20250301</creationdate><title>Hybrid hyperinterpolation over general regions</title><author>An, Congpei ; Ran, Jiashu ; Sommariva, Alvise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-e67bcf42939d548530ce89804927286f0e125456d78a6c9191f3bce4421a92773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Approximation</topic><topic>Continuity (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Operators (mathematics)</topic><topic>Parameters</topic><topic>Quadratures</topic><topic>Regularization</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Congpei</creatorcontrib><creatorcontrib>Ran, Jiashu</creatorcontrib><creatorcontrib>Sommariva, Alvise</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calcolo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Congpei</au><au>Ran, Jiashu</au><au>Sommariva, Alvise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid hyperinterpolation over general regions</atitle><jtitle>Calcolo</jtitle><stitle>Calcolo</stitle><date>2025-03-01</date><risdate>2025</risdate><volume>62</volume><issue>1</issue><artnum>3</artnum><issn>0008-0624</issn><eissn>1126-5434</eissn><abstract>We present an ℓ 2 2 + ℓ 1 -regularized discrete least squares approximation over general regions under assumptions of hyperinterpolation, named hybrid hyperinterpolation. Hybrid hyperinterpolation, using a soft thresholding operator and a filter function to shrink the Fourier coefficients approximated by a high-order quadrature rule of a given continuous function with respect to some orthonormal basis, is a combination of Lasso and filtered hyperinterpolations. Hybrid hyperinterpolation inherits features of them to deal with noisy data once the regularization parameter and the filter function are well chosen. We derive L 2 errors in theoretical analysis for hybrid hyperinterpolation to approximate continuous functions with noise data on sampling points. Numerical examples illustrate the theoretical results and show that well chosen regularization parameters can enhance the approximation quality over the unit-sphere and the union of disks.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10092-024-00625-w</doi><orcidid>https://orcid.org/0000-0002-8902-8063</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-0624
ispartof Calcolo, 2025-03, Vol.62 (1), Article 3
issn 0008-0624
1126-5434
language eng
recordid cdi_proquest_journals_3134326372
source Springer Nature
subjects Approximation
Continuity (mathematics)
Mathematics
Mathematics and Statistics
Numerical Analysis
Operators (mathematics)
Parameters
Quadratures
Regularization
Theory of Computation
title Hybrid hyperinterpolation over general regions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T09%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20hyperinterpolation%20over%20general%20regions&rft.jtitle=Calcolo&rft.au=An,%20Congpei&rft.date=2025-03-01&rft.volume=62&rft.issue=1&rft.artnum=3&rft.issn=0008-0624&rft.eissn=1126-5434&rft_id=info:doi/10.1007/s10092-024-00625-w&rft_dat=%3Cproquest_cross%3E3134326372%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-e67bcf42939d548530ce89804927286f0e125456d78a6c9191f3bce4421a92773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3134326372&rft_id=info:pmid/&rfr_iscdi=true