Loading…
Derived functors and Hilbert polynomials over regular local rings
Let $(A,\mathfrak{m})$ be a regular local ring of dimension $d \geq 1$, I an $\mathfrak{m}$-primary ideal. Let N be a nonzero finitely generated A-module. Consider the functions \begin{equation*} t^I(N, n) = \sum_{i = 0}^{d}\ell(\text{Tor}^A_i(N, A/I^n)) \ \text{and}\ e^I(N, n) = \sum_{i = 0}^{d}\el...
Saved in:
Published in: | Proceedings of the Edinburgh Mathematical Society 2024-11, Vol.67 (4), p.1137-1147 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $(A,\mathfrak{m})$ be a regular local ring of dimension $d \geq 1$, I an $\mathfrak{m}$-primary ideal. Let N be a nonzero finitely generated A-module. Consider the functions
\begin{equation*}
t^I(N, n) = \sum_{i = 0}^{d}\ell(\text{Tor}^A_i(N, A/I^n)) \ \text{and}\ e^I(N, n) = \sum_{i = 0}^{d}\ell(\text{Ext}_A^i(N, A/I^n))
\end{equation*} of polynomial type and let their degrees be $t^I(N) $ and $e^I(N)$. We prove that $t^I(N) = e^I(N) = \max\{\dim N, d -1 \}$. A crucial ingredient in the proof is that $D^b(A)_f$, the bounded derived category of A with finite length cohomology, has no proper thick subcategories. |
---|---|
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S0013091524000646 |