Loading…

Arithmetic properties of l-regular partitions and l-regular bipartitions

For any positive integer l , let $$b_l(n)$$ b l ( n ) and $$B_l(n)$$ B l ( n ) represent the number of l -regular partitions and l -regular bipartitions respectively. By employing q -identities, we prove new congruences for $$b_{11}(n)$$ b 11 ( n ) , $$b_{19}(n)$$ b 19 ( n ) , $$b_{55}(n)$$ b 55 ( n...

Full description

Saved in:
Bibliographic Details
Published in:Rendiconti del Circolo matematico di Palermo 2024-12, Vol.73 (8), p.3055-3064
Main Authors: Shruthi, Kumar, B. R. Srivatsa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For any positive integer l , let $$b_l(n)$$ b l ( n ) and $$B_l(n)$$ B l ( n ) represent the number of l -regular partitions and l -regular bipartitions respectively. By employing q -identities, we prove new congruences for $$b_{11}(n)$$ b 11 ( n ) , $$b_{19}(n)$$ b 19 ( n ) , $$b_{55}(n)$$ b 55 ( n ) , $$B_{11}(n)$$ B 11 ( n ) and $$B_{13}(n)$$ B 13 ( n ) .
ISSN:0009-725X
1973-4409
DOI:10.1007/s12215-024-01082-8