Loading…
Arithmetic properties of l-regular partitions and l-regular bipartitions
For any positive integer l , let $$b_l(n)$$ b l ( n ) and $$B_l(n)$$ B l ( n ) represent the number of l -regular partitions and l -regular bipartitions respectively. By employing q -identities, we prove new congruences for $$b_{11}(n)$$ b 11 ( n ) , $$b_{19}(n)$$ b 19 ( n ) , $$b_{55}(n)$$ b 55 ( n...
Saved in:
Published in: | Rendiconti del Circolo matematico di Palermo 2024-12, Vol.73 (8), p.3055-3064 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For any positive integer l , let $$b_l(n)$$ b l ( n ) and $$B_l(n)$$ B l ( n ) represent the number of l -regular partitions and l -regular bipartitions respectively. By employing q -identities, we prove new congruences for $$b_{11}(n)$$ b 11 ( n ) , $$b_{19}(n)$$ b 19 ( n ) , $$b_{55}(n)$$ b 55 ( n ) , $$B_{11}(n)$$ B 11 ( n ) and $$B_{13}(n)$$ B 13 ( n ) . |
---|---|
ISSN: | 0009-725X 1973-4409 |
DOI: | 10.1007/s12215-024-01082-8 |