Loading…

Impact of Road Roughness on Tire–Pavement Contact Stresses during Vehicle Maneuvering

AbstractThe deterioration of the US transportation highway network and the onset of new technologies in the freight industry are expected to cause changes in the axle load magnitude and distribution, further exacerbating the reduction in the service life of flexible pavements. In this study, a revie...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering mechanics 2025-02, Vol.151 (2)
Main Authors: Cardenas, Johann J., Al-Qadi, Imad L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:AbstractThe deterioration of the US transportation highway network and the onset of new technologies in the freight industry are expected to cause changes in the axle load magnitude and distribution, further exacerbating the reduction in the service life of flexible pavements. In this study, a reviewed framework to incorporate roughness-induced dynamic wheel loading into tire–pavement contact stress prediction is presented. The response to nonfree-rolling conditions, usually overlooked, was considered. State-of-the-art numerical models were used to account for pavement unevenness, vehicle dynamics, and 3D and nonuniform contact stresses. In this framework, for a given target international roughness index, an artificial multitrack roughness profile was converted into a dynamic loading profile based on the mechanical properties of a Class 9 vehicle. Upon discretization of the dynamic loading profile into a finite number of loads based on percentile distributions, a 3D finite element model of a dual-tire assembly was used to predict the contact stress distribution over a rigid surface. The performed numerical simulations allowed us to analytically quantify the variation of vertical and in-plane contact stress distribution. Hence, changes in the stress/strain field distribution and peak values under various axle loading scenarios were determined. The findings reveal that disregarding the effect of road roughness and vehicle maneuvering could result in considerable underestimation of the net forces and contact stress distribution developed at the tire–pavement interface. These considerations are particularly impactful on in-plane contact stresses, which, in turn, are associated with near-surface distresses. Practical ApplicationsThe distribution of contact stresses at the tire–pavement interface influences the likelihood of failure near the surface and is greatly affected by driving behavior (braking, cornering, and acceleration). Truck electrification is likely to modify driving behavior due to the instant torque availability provided by electric powertrains, and the incorporation of battery packs is likely to alter the distribution of axle loading. The impact of these variables on the applied load to a pavement system could be further exacerbated by road conditions. In that regard, this paper aims to quantify the changes in the contact stress distribution when roughness, driving behavior, and axle loading are compounded. Because these considerations are not t
ISSN:0733-9399
1943-7889
DOI:10.1061/JENMDT.EMENG-7900