Loading…

HEAL: Hierarchical Embedding Alignment Loss for Improved Retrieval and Representation Learning

Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by integrating external document retrieval to provide domain-specific or up-to-date knowledge. The effectiveness of RAG depends on the relevance of retrieved documents, which is influenced by the semantic alignment of embeddi...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-12
Main Authors: Bhattarai, Manish, Barron, Ryan, Eren, Maksim, Vu, Minh, Grantcharov, Vesselin, Boureima, Ismael, Stanev, Valentin, Matuszek, Cynthia, Valtchinov, Vladimir, Rasmussen, Kim, Alexandrov, Boian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by integrating external document retrieval to provide domain-specific or up-to-date knowledge. The effectiveness of RAG depends on the relevance of retrieved documents, which is influenced by the semantic alignment of embeddings with the domain's specialized content. Although full fine-tuning can align language models to specific domains, it is computationally intensive and demands substantial data. This paper introduces Hierarchical Embedding Alignment Loss (HEAL), a novel method that leverages hierarchical fuzzy clustering with matrix factorization within contrastive learning to efficiently align LLM embeddings with domain-specific content. HEAL computes level/depth-wise contrastive losses and incorporates hierarchical penalties to align embeddings with the underlying relationships in label hierarchies. This approach enhances retrieval relevance and document classification, effectively reducing hallucinations in LLM outputs. In our experiments, we benchmark and evaluate HEAL across diverse domains, including Healthcare, Material Science, Cyber-security, and Applied Maths.
ISSN:2331-8422