Loading…
Enhanced mechanical properties and interfacial interaction in Nitrile rubber-polyvinyl chloride blends reinforced with graphene : a comprehensive study
Acrylonitrile Butadiene Rubber (NBR) and Polyvinyl Chloride (PVC) blends are popular in rubber product manufacturing for their flexibility, strength, oil resistance, and durability. Their combination enhances mechanical properties, thermal stability, and chemical resistance, making them ideal for in...
Saved in:
Published in: | Journal of polymer research 2024-12, Vol.31 (12), Article 374 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Acrylonitrile Butadiene Rubber (NBR) and Polyvinyl Chloride (PVC) blends are popular in rubber product manufacturing for their flexibility, strength, oil resistance, and durability. Their combination enhances mechanical properties, thermal stability, and chemical resistance, making them ideal for industrial uses like hoses, seals, and insulation. This research work aims to interpret the mechanical properties and interfacial interaction of the NBR/PVC blend with graphene as a reinforcing filler. The morphology and dynamic mechanical properties of 50/50 and 70/30 (w/w) NBR/PVC blend vulcanizates revealed an uniform mixing. In X-ray diffraction studies, an increase in interlayer spacing was evident up to 5 phr graphene. The dynamic viscoelastic properties were used to report the activation energy and α-relaxation of NBR-PVC 70/30, 50/50 neat and graphene filled vulcanizates. The α-relaxation frequency of the filled compositions exhibited a gradual decline as the graphene content increased, while concurrently witnessing a reduction in the breadth of the loss factor peak. The storage modulus increased with increasing the graphene content. The interaction parameter of all compositions was determined by a theoretical expression based on the storage modulus at 10, 50, 100, 500 and 1000 Hz. The 50/50 blend of NBR and PVC was seen to have a greater interaction parameter than the 70/30 blend. However, among the NBR-PVC 70/30 blend compositions, the interaction was highest for 5 phr graphene, and reduced with further incorporation of graphene. Many studies lack information on the interaction of graphene with the rubber matrix. Hence, this research could enhance the understanding of how graphene disperses within the rubber matrix, its influence on mechanical and viscoelastic properties of NBR/PVC rubbers. |
---|---|
ISSN: | 1022-9760 1572-8935 |
DOI: | 10.1007/s10965-024-04198-8 |