Loading…

Maximum Power Point Tracking Based on Finite Voltage-Set MPC for Grid-Connected Photovoltaic Systems Under Environmental Variations

This paper proposes a model predictive control (MPC)-based approach for optimizing the performance of a photovoltaic (PV) system. The proposed method employs finite voltage-set maximum power point tracking (FVS-MPPT), ensuring precise duty cycle adjustment for a boost converter in the PV system cons...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2024-12, Vol.16 (23), p.10317
Main Authors: Hassan, Mohammed A, Adel, Mahmoud M, Saleh, Amr A, Eteiba, Magdy B, Farhan, Ahmed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a model predictive control (MPC)-based approach for optimizing the performance of a photovoltaic (PV) system. The proposed method employs finite voltage-set maximum power point tracking (FVS-MPPT), ensuring precise duty cycle adjustment for a boost converter in the PV system considering the environmental changes in irradiation and temperature. Additionally, MPC is implemented for the grid-side converter to determine the optimal switching vector, ensuring precise control of active power via reference d-axis current and the elimination of reactive power by setting the reference q-axis current to zero. This approach optimizes the converter’s performance, maintaining a stable DC-link voltage while ensuring efficient grid integration. To ensure proper synchronization with the grid, a phase-locked loop (PLL) is utilized to provide the necessary grid voltage angle for dq frame transformation. Simulation results highlight the efficiency of the proposed MPC strategy, with the PV-side converter showing a robust response by dynamically adjusting the duty cycle to maintain optimal performance under varying irradiation and temperature conditions. Furthermore, the grid-side converter ensures precise control of active power and eliminates reactive power, enhancing the overall system’s stability and efficiency during grid interactions. A functional comparison of simulation results between the conventional P&O algorithm and the FVS-MPPT approach is presented, demonstrating the enhanced performance of the proposed technique over the conventional method including the total harmonic distortion for both techniques.
ISSN:2071-1050
2071-1050
DOI:10.3390/su162310317