Loading…
YOLOv5-MHSA-DS: an efficient pig detection and counting method
Accurate and efficient livestock detection and counting are crucial for agricultural intelligence. To address the obstacles created by traditional manual methods and limitations of current vision technology, we introduce YOLOv5-MHSA-DS, a novel model that integrates YOLOv5 framework with Multi-Head...
Saved in:
Published in: | Systems science & control engineering 2024-12, Vol.12 (1) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-9f7479916a428e40133357d98b983240f26708c03209cf73997f2323a61032ab3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Systems science & control engineering |
container_volume | 12 |
creator | Hao, Wangli Zhang, Li Xu, Shu-ai Han, Meng Li, Fuzhong Yang, Hua |
description | Accurate and efficient livestock detection and counting are crucial for agricultural intelligence. To address the obstacles created by traditional manual methods and limitations of current vision technology, we introduce YOLOv5-MHSA-DS, a novel model that integrates YOLOv5 framework with Multi-Head Self-Attention and DySample modules. Multi-Head Self-Attention excels at capturing diverse features, enhancing pig detection and counting accuracy. On the other hand, DySample dynamically adjusts sampling strategies based on input data, allowing it to focus on the most critical parts of the image and thereby significantly improving pig detection and counting performance. To validate the generalization and robustness of our proposed model, we conducted ablation experiments. The results demonstrate that YOLOv5-MHSA-DS achieves an impressive mAP of 93.8% and counting accuracy of 95.0%, surpassing other models by significant margins of 12.2% and 19.0%, respectively. |
doi_str_mv | 10.1080/21642583.2024.2394428 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3145933311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_02730eb5595b4460b43305baa4b4a632</doaj_id><sourcerecordid>3145933311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-9f7479916a428e40133357d98b983240f26708c03209cf73997f2323a61032ab3</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgqf4EYcHz1nzubjyIpX60UOmhevAUstmkpmw3NZsq_fdm3SqezOWFeTPzhgHgAsERggW8wiijmBVkhCGmI0w4pbg4AoMOT7vF8Z__KThv2zWMr2AoMgfg5nUxX3yw9Gm6HKd3y-tENok2xiqrm5Bs7SqpdNAqWNfEVZUot2uCbVbJRoc3V52BEyPrVp8f5hC8PNw_T6bpfPE4m4znqSKch5SbnOaco0zGcJpCRAhhecWLkhcEU2hwlsNCQYIhVyaPmtxggonMUMRkSYZg1vtWTq7F1tuN9HvhpBXfgPMrIX2wqtYC4pxAXTLGWUlpBktKCGSllLSkMoumQ3DZe229e9_pNoi12_kmxhcEUcZjNoQii_Us5V3bem1-ryIouubFT_Oia14cmo-6215nG-P8Rn46X1ciyH3tvPGyUbY786_FF5NphCU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145933311</pqid></control><display><type>article</type><title>YOLOv5-MHSA-DS: an efficient pig detection and counting method</title><source>Taylor & Francis Open Access</source><creator>Hao, Wangli ; Zhang, Li ; Xu, Shu-ai ; Han, Meng ; Li, Fuzhong ; Yang, Hua</creator><creatorcontrib>Hao, Wangli ; Zhang, Li ; Xu, Shu-ai ; Han, Meng ; Li, Fuzhong ; Yang, Hua</creatorcontrib><description>Accurate and efficient livestock detection and counting are crucial for agricultural intelligence. To address the obstacles created by traditional manual methods and limitations of current vision technology, we introduce YOLOv5-MHSA-DS, a novel model that integrates YOLOv5 framework with Multi-Head Self-Attention and DySample modules. Multi-Head Self-Attention excels at capturing diverse features, enhancing pig detection and counting accuracy. On the other hand, DySample dynamically adjusts sampling strategies based on input data, allowing it to focus on the most critical parts of the image and thereby significantly improving pig detection and counting performance. To validate the generalization and robustness of our proposed model, we conducted ablation experiments. The results demonstrate that YOLOv5-MHSA-DS achieves an impressive mAP of 93.8% and counting accuracy of 95.0%, surpassing other models by significant margins of 12.2% and 19.0%, respectively.</description><identifier>ISSN: 2164-2583</identifier><identifier>EISSN: 2164-2583</identifier><identifier>DOI: 10.1080/21642583.2024.2394428</identifier><language>eng</language><publisher>Macclesfield: Taylor & Francis</publisher><subject>Ablation ; Accuracy ; Computer vision ; Critical components ; Deep learning ; DySample ; Efficiency ; Hogs ; Livestock ; multi-head self-attention ; Open access publishing ; pig detection and counting ; Systems science ; YOLOv5-MHSA-DS</subject><ispartof>Systems science & control engineering, 2024-12, Vol.12 (1)</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-9f7479916a428e40133357d98b983240f26708c03209cf73997f2323a61032ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/21642583.2024.2394428$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/21642583.2024.2394428$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml></links><search><creatorcontrib>Hao, Wangli</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Xu, Shu-ai</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Li, Fuzhong</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><title>YOLOv5-MHSA-DS: an efficient pig detection and counting method</title><title>Systems science & control engineering</title><description>Accurate and efficient livestock detection and counting are crucial for agricultural intelligence. To address the obstacles created by traditional manual methods and limitations of current vision technology, we introduce YOLOv5-MHSA-DS, a novel model that integrates YOLOv5 framework with Multi-Head Self-Attention and DySample modules. Multi-Head Self-Attention excels at capturing diverse features, enhancing pig detection and counting accuracy. On the other hand, DySample dynamically adjusts sampling strategies based on input data, allowing it to focus on the most critical parts of the image and thereby significantly improving pig detection and counting performance. To validate the generalization and robustness of our proposed model, we conducted ablation experiments. The results demonstrate that YOLOv5-MHSA-DS achieves an impressive mAP of 93.8% and counting accuracy of 95.0%, surpassing other models by significant margins of 12.2% and 19.0%, respectively.</description><subject>Ablation</subject><subject>Accuracy</subject><subject>Computer vision</subject><subject>Critical components</subject><subject>Deep learning</subject><subject>DySample</subject><subject>Efficiency</subject><subject>Hogs</subject><subject>Livestock</subject><subject>multi-head self-attention</subject><subject>Open access publishing</subject><subject>pig detection and counting</subject><subject>Systems science</subject><subject>YOLOv5-MHSA-DS</subject><issn>2164-2583</issn><issn>2164-2583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UE1LAzEUDKJgqf4EYcHz1nzubjyIpX60UOmhevAUstmkpmw3NZsq_fdm3SqezOWFeTPzhgHgAsERggW8wiijmBVkhCGmI0w4pbg4AoMOT7vF8Z__KThv2zWMr2AoMgfg5nUxX3yw9Gm6HKd3y-tENok2xiqrm5Bs7SqpdNAqWNfEVZUot2uCbVbJRoc3V52BEyPrVp8f5hC8PNw_T6bpfPE4m4znqSKch5SbnOaco0zGcJpCRAhhecWLkhcEU2hwlsNCQYIhVyaPmtxggonMUMRkSYZg1vtWTq7F1tuN9HvhpBXfgPMrIX2wqtYC4pxAXTLGWUlpBktKCGSllLSkMoumQ3DZe229e9_pNoi12_kmxhcEUcZjNoQii_Us5V3bem1-ryIouubFT_Oia14cmo-6215nG-P8Rn46X1ciyH3tvPGyUbY786_FF5NphCU</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Hao, Wangli</creator><creator>Zhang, Li</creator><creator>Xu, Shu-ai</creator><creator>Han, Meng</creator><creator>Li, Fuzhong</creator><creator>Yang, Hua</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20241231</creationdate><title>YOLOv5-MHSA-DS: an efficient pig detection and counting method</title><author>Hao, Wangli ; Zhang, Li ; Xu, Shu-ai ; Han, Meng ; Li, Fuzhong ; Yang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-9f7479916a428e40133357d98b983240f26708c03209cf73997f2323a61032ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Accuracy</topic><topic>Computer vision</topic><topic>Critical components</topic><topic>Deep learning</topic><topic>DySample</topic><topic>Efficiency</topic><topic>Hogs</topic><topic>Livestock</topic><topic>multi-head self-attention</topic><topic>Open access publishing</topic><topic>pig detection and counting</topic><topic>Systems science</topic><topic>YOLOv5-MHSA-DS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Wangli</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Xu, Shu-ai</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Li, Fuzhong</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>ProQuest Research Library</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Systems science & control engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Wangli</au><au>Zhang, Li</au><au>Xu, Shu-ai</au><au>Han, Meng</au><au>Li, Fuzhong</au><au>Yang, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>YOLOv5-MHSA-DS: an efficient pig detection and counting method</atitle><jtitle>Systems science & control engineering</jtitle><date>2024-12-31</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><issn>2164-2583</issn><eissn>2164-2583</eissn><abstract>Accurate and efficient livestock detection and counting are crucial for agricultural intelligence. To address the obstacles created by traditional manual methods and limitations of current vision technology, we introduce YOLOv5-MHSA-DS, a novel model that integrates YOLOv5 framework with Multi-Head Self-Attention and DySample modules. Multi-Head Self-Attention excels at capturing diverse features, enhancing pig detection and counting accuracy. On the other hand, DySample dynamically adjusts sampling strategies based on input data, allowing it to focus on the most critical parts of the image and thereby significantly improving pig detection and counting performance. To validate the generalization and robustness of our proposed model, we conducted ablation experiments. The results demonstrate that YOLOv5-MHSA-DS achieves an impressive mAP of 93.8% and counting accuracy of 95.0%, surpassing other models by significant margins of 12.2% and 19.0%, respectively.</abstract><cop>Macclesfield</cop><pub>Taylor & Francis</pub><doi>10.1080/21642583.2024.2394428</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2164-2583 |
ispartof | Systems science & control engineering, 2024-12, Vol.12 (1) |
issn | 2164-2583 2164-2583 |
language | eng |
recordid | cdi_proquest_journals_3145933311 |
source | Taylor & Francis Open Access |
subjects | Ablation Accuracy Computer vision Critical components Deep learning DySample Efficiency Hogs Livestock multi-head self-attention Open access publishing pig detection and counting Systems science YOLOv5-MHSA-DS |
title | YOLOv5-MHSA-DS: an efficient pig detection and counting method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-06T05%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=YOLOv5-MHSA-DS:%20an%20efficient%20pig%20detection%20and%20counting%20method&rft.jtitle=Systems%20science%20&%20control%20engineering&rft.au=Hao,%20Wangli&rft.date=2024-12-31&rft.volume=12&rft.issue=1&rft.issn=2164-2583&rft.eissn=2164-2583&rft_id=info:doi/10.1080/21642583.2024.2394428&rft_dat=%3Cproquest_cross%3E3145933311%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-9f7479916a428e40133357d98b983240f26708c03209cf73997f2323a61032ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3145933311&rft_id=info:pmid/&rfr_iscdi=true |