Loading…
A Low-Temperature Tunable Microcavity featuring High Passive Stability and Microwave Integration
Open microcavities offer great potential for the exploration and utilization of efficient spin-photon interfaces with Purcell-enhanced quantum emitters thanks to their large spectral and spatial tunability combined with high versatility of sample integration. However, a major challenge for this plat...
Saved in:
Published in: | arXiv.org 2024-12 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Open microcavities offer great potential for the exploration and utilization of efficient spin-photon interfaces with Purcell-enhanced quantum emitters thanks to their large spectral and spatial tunability combined with high versatility of sample integration. However, a major challenge for this platform is the sensitivity to cavity length fluctuations in the cryogenic environment, which leads to cavity resonance frequency variations and thereby a lowered averaged Purcell enhancement. This work presents a closed-cycle cryogenic fiber-based microcavity setup, which is in particular designed for a low passive vibration level, while still providing large tunability and flexibility in fiber and sample integration, and high photon collection efficiency from the cavity mode. At temperatures below 10 Kelvin, a stability level of around 25 picometer is reproducibly achieved in different setup configurations, including the extension with microwave control for manipulating the spin of cavity-coupled quantum emitters, enabling a bright photonic interface with optically active qubits. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2409.01857 |