Loading…

Exploring the influence of fiber orientation on the mechanical characteristics of polymer composites reinforced with banana and corn fibers

In recent decades, the utilization of polymer composites reinforced with natural fibers has seen a significant increase due to their durability, eco-friendliness, and favorable composite properties. This study investigates the influence of unidirectional and cross-directional fiber orientation on th...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2025-02, Vol.239 (2), p.283-296
Main Authors: Kumar, Shubham, Agrawal, Anant Prakash, Ali, Shahazad, Manral, Ankit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent decades, the utilization of polymer composites reinforced with natural fibers has seen a significant increase due to their durability, eco-friendliness, and favorable composite properties. This study investigates the influence of unidirectional and cross-directional fiber orientation on the mechanical properties of polymer composites reinforced with banana and corn fibers, fabricated through a hand-lay-up process. The research assesses the impact of fiber orientation on various mechanical properties, including density, porosity, tensile strength, flexural strength, and impact strength. The findings reveal that the higher densities of banana and corn fibers, in comparison to the epoxy matrix, contribute to increased overall weight density in the composites, with cross-directional fiber orientation leading to higher porosity. Moreover, cross-directional reinforcement orientation enhances tensile strength, resulting in a robust bond with the matrix. Composites with cross-directional corn fibers exhibit the highest ultimate tensile strength of 49.57 MPa, marking a significant improvement over other fiber configurations. Notably, unidirectional corn fibers outperform in flexural strength of 14.07 MPa, surpassing banana–corn, and banana–banana configurations by 268.32% and 32.73%, respectively, and cross-directional banana–corn hybrid composites exhibit superior impact strength measuring 5.31 kJ/m2 due to their ability to resist crack propagation. Whereas scanning electron microscopy micrographs of fractured samples reveal debonding, fiber pullout, and fiber scissoring as the root causes of sample failure under tensile load These insights provide valuable guidance for the design and application of composite materials.
ISSN:1464-4207
2041-3076
DOI:10.1177/14644207241260662