Loading…

Rank test for heteroscedastic functional data

In this paper, we consider (mid-)rank based inferences for testing hypotheses in a fully nonparametric marginal model for heteroscedastic functional data that contain a large number of within subject measurements from possibly only a limited number of subjects. The effects of several crossed factors...

Full description

Saved in:
Bibliographic Details
Published in:Journal of multivariate analysis 2010-09, Vol.101 (8), p.1791-1805
Main Authors: Wang, Haiyan, Akritas, Michael G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we consider (mid-)rank based inferences for testing hypotheses in a fully nonparametric marginal model for heteroscedastic functional data that contain a large number of within subject measurements from possibly only a limited number of subjects. The effects of several crossed factors and their interactions with time are considered. The results are obtained by establishing asymptotic equivalence between the rank statistics and their asymptotic rank transforms. The inference holds under the assumption of α -mixing without moment assumptions. As a result, the proposed tests are applicable to data from heavy-tailed or skewed distributions, including both continuous and ordered categorical responses. Simulation results and a real application confirm that the (mid-)rank procedures provide both robustness and increased power over the methods based on original observations for non-normally distributed data.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2010.03.012