Loading…
Rank test for heteroscedastic functional data
In this paper, we consider (mid-)rank based inferences for testing hypotheses in a fully nonparametric marginal model for heteroscedastic functional data that contain a large number of within subject measurements from possibly only a limited number of subjects. The effects of several crossed factors...
Saved in:
Published in: | Journal of multivariate analysis 2010-09, Vol.101 (8), p.1791-1805 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c471t-14ad253935fb54330845f725b7f46f35daf56a1bc94ce9912025460fd180cba03 |
---|---|
cites | cdi_FETCH-LOGICAL-c471t-14ad253935fb54330845f725b7f46f35daf56a1bc94ce9912025460fd180cba03 |
container_end_page | 1805 |
container_issue | 8 |
container_start_page | 1791 |
container_title | Journal of multivariate analysis |
container_volume | 101 |
creator | Wang, Haiyan Akritas, Michael G. |
description | In this paper, we consider (mid-)rank based inferences for testing hypotheses in a fully nonparametric marginal model for heteroscedastic functional data that contain a large number of within subject measurements from possibly only a limited number of subjects. The effects of several crossed factors and their interactions with time are considered. The results are obtained by establishing asymptotic equivalence between the rank statistics and their asymptotic rank transforms. The inference holds under the assumption of
α
-mixing without moment assumptions. As a result, the proposed tests are applicable to data from heavy-tailed or skewed distributions, including both continuous and ordered categorical responses. Simulation results and a real application confirm that the (mid-)rank procedures provide both robustness and increased power over the methods based on original observations for non-normally distributed data. |
doi_str_mv | 10.1016/j.jmva.2010.03.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_346204113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X10000710</els_id><sourcerecordid>2043315061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-14ad253935fb54330845f725b7f46f35daf56a1bc94ce9912025460fd180cba03</originalsourceid><addsrcrecordid>eNp9kEtLJDEUhcPgwLSOf8BVIbis9uZVD3Aj4gsUYZiB2YXbqYRO2V3VJukG_723bOmli5NAcs7h4zB2xmHOgVeX_bxf73AugB5AzoGLH2zGodVlLZQ8YjMAVZdCt_9_seOUegDOda1mrPyDw2uRXcqFH2OxdNnFMVnXYcrBFn472BzGAVdFhxl_s58eV8mdft0n7N_d7d-bh_Lp5f7x5vqptKrmueQKO6FlK7VfaCUlNEr7WuhF7VXlpe7Q6wr5wrbKurblAoRWFfiON2AXCPKEne97N3F82xKc6cdtJIpkpKoEKM4lmcTeZIk4RefNJoY1xnfDwUyrmN5Mq5hpFQPS0CoUet6Hots4e0g45ybrgGZnJFKYznfSZ1RiIDWkzfRZt9wQqDbLvKa-iy9STBZXPuJgQzr0CtFUqm1q8l3tfY5m2wUXTbLBDTR0iM5m043hO-wPj1GPzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>346204113</pqid></control><display><type>article</type><title>Rank test for heteroscedastic functional data</title><source>Elsevier</source><creator>Wang, Haiyan ; Akritas, Michael G.</creator><creatorcontrib>Wang, Haiyan ; Akritas, Michael G.</creatorcontrib><description>In this paper, we consider (mid-)rank based inferences for testing hypotheses in a fully nonparametric marginal model for heteroscedastic functional data that contain a large number of within subject measurements from possibly only a limited number of subjects. The effects of several crossed factors and their interactions with time are considered. The results are obtained by establishing asymptotic equivalence between the rank statistics and their asymptotic rank transforms. The inference holds under the assumption of
α
-mixing without moment assumptions. As a result, the proposed tests are applicable to data from heavy-tailed or skewed distributions, including both continuous and ordered categorical responses. Simulation results and a real application confirm that the (mid-)rank procedures provide both robustness and increased power over the methods based on original observations for non-normally distributed data.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2010.03.012</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Asymptotic methods ; Exact sciences and technology ; Global analysis, analysis on manifolds ; High-dimensional multivariate analysis ; Hypothesis testing ; Mathematics ; Measurement ; Multivariate analysis ; Nonparametric inference ; Parametric inference ; Probability and statistics ; Repeated measures ; Repeated measures Nonparametric inference Hypothesis testing High-dimensional multivariate analysis ; Sciences and techniques of general use ; Simulation ; Statistics ; Studies ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Journal of multivariate analysis, 2010-09, Vol.101 (8), p.1791-1805</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor & Francis Group Sep 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-14ad253935fb54330845f725b7f46f35daf56a1bc94ce9912025460fd180cba03</citedby><cites>FETCH-LOGICAL-c471t-14ad253935fb54330845f725b7f46f35daf56a1bc94ce9912025460fd180cba03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22864987$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a101_3ay_3a2010_3ai_3a8_3ap_3a1791-1805.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Akritas, Michael G.</creatorcontrib><title>Rank test for heteroscedastic functional data</title><title>Journal of multivariate analysis</title><description>In this paper, we consider (mid-)rank based inferences for testing hypotheses in a fully nonparametric marginal model for heteroscedastic functional data that contain a large number of within subject measurements from possibly only a limited number of subjects. The effects of several crossed factors and their interactions with time are considered. The results are obtained by establishing asymptotic equivalence between the rank statistics and their asymptotic rank transforms. The inference holds under the assumption of
α
-mixing without moment assumptions. As a result, the proposed tests are applicable to data from heavy-tailed or skewed distributions, including both continuous and ordered categorical responses. Simulation results and a real application confirm that the (mid-)rank procedures provide both robustness and increased power over the methods based on original observations for non-normally distributed data.</description><subject>Asymptotic methods</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>High-dimensional multivariate analysis</subject><subject>Hypothesis testing</subject><subject>Mathematics</subject><subject>Measurement</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Repeated measures</subject><subject>Repeated measures Nonparametric inference Hypothesis testing High-dimensional multivariate analysis</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Statistics</subject><subject>Studies</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLJDEUhcPgwLSOf8BVIbis9uZVD3Aj4gsUYZiB2YXbqYRO2V3VJukG_723bOmli5NAcs7h4zB2xmHOgVeX_bxf73AugB5AzoGLH2zGodVlLZQ8YjMAVZdCt_9_seOUegDOda1mrPyDw2uRXcqFH2OxdNnFMVnXYcrBFn472BzGAVdFhxl_s58eV8mdft0n7N_d7d-bh_Lp5f7x5vqptKrmueQKO6FlK7VfaCUlNEr7WuhF7VXlpe7Q6wr5wrbKurblAoRWFfiON2AXCPKEne97N3F82xKc6cdtJIpkpKoEKM4lmcTeZIk4RefNJoY1xnfDwUyrmN5Mq5hpFQPS0CoUet6Hots4e0g45ybrgGZnJFKYznfSZ1RiIDWkzfRZt9wQqDbLvKa-iy9STBZXPuJgQzr0CtFUqm1q8l3tfY5m2wUXTbLBDTR0iM5m043hO-wPj1GPzQ</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Wang, Haiyan</creator><creator>Akritas, Michael G.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Taylor & Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20100901</creationdate><title>Rank test for heteroscedastic functional data</title><author>Wang, Haiyan ; Akritas, Michael G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-14ad253935fb54330845f725b7f46f35daf56a1bc94ce9912025460fd180cba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Asymptotic methods</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>High-dimensional multivariate analysis</topic><topic>Hypothesis testing</topic><topic>Mathematics</topic><topic>Measurement</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Repeated measures</topic><topic>Repeated measures Nonparametric inference Hypothesis testing High-dimensional multivariate analysis</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Statistics</topic><topic>Studies</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Akritas, Michael G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haiyan</au><au>Akritas, Michael G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rank test for heteroscedastic functional data</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>101</volume><issue>8</issue><spage>1791</spage><epage>1805</epage><pages>1791-1805</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>In this paper, we consider (mid-)rank based inferences for testing hypotheses in a fully nonparametric marginal model for heteroscedastic functional data that contain a large number of within subject measurements from possibly only a limited number of subjects. The effects of several crossed factors and their interactions with time are considered. The results are obtained by establishing asymptotic equivalence between the rank statistics and their asymptotic rank transforms. The inference holds under the assumption of
α
-mixing without moment assumptions. As a result, the proposed tests are applicable to data from heavy-tailed or skewed distributions, including both continuous and ordered categorical responses. Simulation results and a real application confirm that the (mid-)rank procedures provide both robustness and increased power over the methods based on original observations for non-normally distributed data.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2010.03.012</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-259X |
ispartof | Journal of multivariate analysis, 2010-09, Vol.101 (8), p.1791-1805 |
issn | 0047-259X 1095-7243 |
language | eng |
recordid | cdi_proquest_journals_346204113 |
source | Elsevier |
subjects | Asymptotic methods Exact sciences and technology Global analysis, analysis on manifolds High-dimensional multivariate analysis Hypothesis testing Mathematics Measurement Multivariate analysis Nonparametric inference Parametric inference Probability and statistics Repeated measures Repeated measures Nonparametric inference Hypothesis testing High-dimensional multivariate analysis Sciences and techniques of general use Simulation Statistics Studies Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Rank test for heteroscedastic functional data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rank%20test%20for%20heteroscedastic%20functional%20data&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Wang,%20Haiyan&rft.date=2010-09-01&rft.volume=101&rft.issue=8&rft.spage=1791&rft.epage=1805&rft.pages=1791-1805&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2010.03.012&rft_dat=%3Cproquest_cross%3E2043315061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-14ad253935fb54330845f725b7f46f35daf56a1bc94ce9912025460fd180cba03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=346204113&rft_id=info:pmid/&rfr_iscdi=true |