Loading…

Rank test for heteroscedastic functional data

In this paper, we consider (mid-)rank based inferences for testing hypotheses in a fully nonparametric marginal model for heteroscedastic functional data that contain a large number of within subject measurements from possibly only a limited number of subjects. The effects of several crossed factors...

Full description

Saved in:
Bibliographic Details
Published in:Journal of multivariate analysis 2010-09, Vol.101 (8), p.1791-1805
Main Authors: Wang, Haiyan, Akritas, Michael G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c471t-14ad253935fb54330845f725b7f46f35daf56a1bc94ce9912025460fd180cba03
cites cdi_FETCH-LOGICAL-c471t-14ad253935fb54330845f725b7f46f35daf56a1bc94ce9912025460fd180cba03
container_end_page 1805
container_issue 8
container_start_page 1791
container_title Journal of multivariate analysis
container_volume 101
creator Wang, Haiyan
Akritas, Michael G.
description In this paper, we consider (mid-)rank based inferences for testing hypotheses in a fully nonparametric marginal model for heteroscedastic functional data that contain a large number of within subject measurements from possibly only a limited number of subjects. The effects of several crossed factors and their interactions with time are considered. The results are obtained by establishing asymptotic equivalence between the rank statistics and their asymptotic rank transforms. The inference holds under the assumption of α -mixing without moment assumptions. As a result, the proposed tests are applicable to data from heavy-tailed or skewed distributions, including both continuous and ordered categorical responses. Simulation results and a real application confirm that the (mid-)rank procedures provide both robustness and increased power over the methods based on original observations for non-normally distributed data.
doi_str_mv 10.1016/j.jmva.2010.03.012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_346204113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X10000710</els_id><sourcerecordid>2043315061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-14ad253935fb54330845f725b7f46f35daf56a1bc94ce9912025460fd180cba03</originalsourceid><addsrcrecordid>eNp9kEtLJDEUhcPgwLSOf8BVIbis9uZVD3Aj4gsUYZiB2YXbqYRO2V3VJukG_723bOmli5NAcs7h4zB2xmHOgVeX_bxf73AugB5AzoGLH2zGodVlLZQ8YjMAVZdCt_9_seOUegDOda1mrPyDw2uRXcqFH2OxdNnFMVnXYcrBFn472BzGAVdFhxl_s58eV8mdft0n7N_d7d-bh_Lp5f7x5vqptKrmueQKO6FlK7VfaCUlNEr7WuhF7VXlpe7Q6wr5wrbKurblAoRWFfiON2AXCPKEne97N3F82xKc6cdtJIpkpKoEKM4lmcTeZIk4RefNJoY1xnfDwUyrmN5Mq5hpFQPS0CoUet6Hots4e0g45ybrgGZnJFKYznfSZ1RiIDWkzfRZt9wQqDbLvKa-iy9STBZXPuJgQzr0CtFUqm1q8l3tfY5m2wUXTbLBDTR0iM5m043hO-wPj1GPzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>346204113</pqid></control><display><type>article</type><title>Rank test for heteroscedastic functional data</title><source>Elsevier</source><creator>Wang, Haiyan ; Akritas, Michael G.</creator><creatorcontrib>Wang, Haiyan ; Akritas, Michael G.</creatorcontrib><description>In this paper, we consider (mid-)rank based inferences for testing hypotheses in a fully nonparametric marginal model for heteroscedastic functional data that contain a large number of within subject measurements from possibly only a limited number of subjects. The effects of several crossed factors and their interactions with time are considered. The results are obtained by establishing asymptotic equivalence between the rank statistics and their asymptotic rank transforms. The inference holds under the assumption of α -mixing without moment assumptions. As a result, the proposed tests are applicable to data from heavy-tailed or skewed distributions, including both continuous and ordered categorical responses. Simulation results and a real application confirm that the (mid-)rank procedures provide both robustness and increased power over the methods based on original observations for non-normally distributed data.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2010.03.012</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Asymptotic methods ; Exact sciences and technology ; Global analysis, analysis on manifolds ; High-dimensional multivariate analysis ; Hypothesis testing ; Mathematics ; Measurement ; Multivariate analysis ; Nonparametric inference ; Parametric inference ; Probability and statistics ; Repeated measures ; Repeated measures Nonparametric inference Hypothesis testing High-dimensional multivariate analysis ; Sciences and techniques of general use ; Simulation ; Statistics ; Studies ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Journal of multivariate analysis, 2010-09, Vol.101 (8), p.1791-1805</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Group Sep 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-14ad253935fb54330845f725b7f46f35daf56a1bc94ce9912025460fd180cba03</citedby><cites>FETCH-LOGICAL-c471t-14ad253935fb54330845f725b7f46f35daf56a1bc94ce9912025460fd180cba03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22864987$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a101_3ay_3a2010_3ai_3a8_3ap_3a1791-1805.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Akritas, Michael G.</creatorcontrib><title>Rank test for heteroscedastic functional data</title><title>Journal of multivariate analysis</title><description>In this paper, we consider (mid-)rank based inferences for testing hypotheses in a fully nonparametric marginal model for heteroscedastic functional data that contain a large number of within subject measurements from possibly only a limited number of subjects. The effects of several crossed factors and their interactions with time are considered. The results are obtained by establishing asymptotic equivalence between the rank statistics and their asymptotic rank transforms. The inference holds under the assumption of α -mixing without moment assumptions. As a result, the proposed tests are applicable to data from heavy-tailed or skewed distributions, including both continuous and ordered categorical responses. Simulation results and a real application confirm that the (mid-)rank procedures provide both robustness and increased power over the methods based on original observations for non-normally distributed data.</description><subject>Asymptotic methods</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>High-dimensional multivariate analysis</subject><subject>Hypothesis testing</subject><subject>Mathematics</subject><subject>Measurement</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Repeated measures</subject><subject>Repeated measures Nonparametric inference Hypothesis testing High-dimensional multivariate analysis</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Statistics</subject><subject>Studies</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLJDEUhcPgwLSOf8BVIbis9uZVD3Aj4gsUYZiB2YXbqYRO2V3VJukG_723bOmli5NAcs7h4zB2xmHOgVeX_bxf73AugB5AzoGLH2zGodVlLZQ8YjMAVZdCt_9_seOUegDOda1mrPyDw2uRXcqFH2OxdNnFMVnXYcrBFn472BzGAVdFhxl_s58eV8mdft0n7N_d7d-bh_Lp5f7x5vqptKrmueQKO6FlK7VfaCUlNEr7WuhF7VXlpe7Q6wr5wrbKurblAoRWFfiON2AXCPKEne97N3F82xKc6cdtJIpkpKoEKM4lmcTeZIk4RefNJoY1xnfDwUyrmN5Mq5hpFQPS0CoUet6Hots4e0g45ybrgGZnJFKYznfSZ1RiIDWkzfRZt9wQqDbLvKa-iy9STBZXPuJgQzr0CtFUqm1q8l3tfY5m2wUXTbLBDTR0iM5m043hO-wPj1GPzQ</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Wang, Haiyan</creator><creator>Akritas, Michael G.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Taylor &amp; Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20100901</creationdate><title>Rank test for heteroscedastic functional data</title><author>Wang, Haiyan ; Akritas, Michael G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-14ad253935fb54330845f725b7f46f35daf56a1bc94ce9912025460fd180cba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Asymptotic methods</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>High-dimensional multivariate analysis</topic><topic>Hypothesis testing</topic><topic>Mathematics</topic><topic>Measurement</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Repeated measures</topic><topic>Repeated measures Nonparametric inference Hypothesis testing High-dimensional multivariate analysis</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Statistics</topic><topic>Studies</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Akritas, Michael G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haiyan</au><au>Akritas, Michael G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rank test for heteroscedastic functional data</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>101</volume><issue>8</issue><spage>1791</spage><epage>1805</epage><pages>1791-1805</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>In this paper, we consider (mid-)rank based inferences for testing hypotheses in a fully nonparametric marginal model for heteroscedastic functional data that contain a large number of within subject measurements from possibly only a limited number of subjects. The effects of several crossed factors and their interactions with time are considered. The results are obtained by establishing asymptotic equivalence between the rank statistics and their asymptotic rank transforms. The inference holds under the assumption of α -mixing without moment assumptions. As a result, the proposed tests are applicable to data from heavy-tailed or skewed distributions, including both continuous and ordered categorical responses. Simulation results and a real application confirm that the (mid-)rank procedures provide both robustness and increased power over the methods based on original observations for non-normally distributed data.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2010.03.012</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2010-09, Vol.101 (8), p.1791-1805
issn 0047-259X
1095-7243
language eng
recordid cdi_proquest_journals_346204113
source Elsevier
subjects Asymptotic methods
Exact sciences and technology
Global analysis, analysis on manifolds
High-dimensional multivariate analysis
Hypothesis testing
Mathematics
Measurement
Multivariate analysis
Nonparametric inference
Parametric inference
Probability and statistics
Repeated measures
Repeated measures Nonparametric inference Hypothesis testing High-dimensional multivariate analysis
Sciences and techniques of general use
Simulation
Statistics
Studies
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Rank test for heteroscedastic functional data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rank%20test%20for%20heteroscedastic%20functional%20data&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Wang,%20Haiyan&rft.date=2010-09-01&rft.volume=101&rft.issue=8&rft.spage=1791&rft.epage=1805&rft.pages=1791-1805&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2010.03.012&rft_dat=%3Cproquest_cross%3E2043315061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-14ad253935fb54330845f725b7f46f35daf56a1bc94ce9912025460fd180cba03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=346204113&rft_id=info:pmid/&rfr_iscdi=true