Loading…
The interval Shapley value: an axiomatization
The Shapley value, one of the most widespread concepts in operations Research applications of cooperative game theory, was defined and axiomatically characterized in different game-theoretic models. Recently much research work has been done in order to extend OR models and methods, in particular coo...
Saved in:
Published in: | Central European journal of operations research 2010-06, Vol.18 (2), p.131-140 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Shapley value, one of the most widespread concepts in operations Research applications of cooperative game theory, was defined and axiomatically characterized in different game-theoretic models. Recently much research work has been done in order to extend OR models and methods, in particular cooperative game theory, for situations with interval data. This paper focuses on the Shapley value for cooperative games where the set of players is finite and the coalition values are compact intervals of real numbers. The interval Shapley value is characterized with the aid of the properties of additivity, efficiency, symmetry and dummy player, which are straightforward generalizations of the corresponding properties in the classical cooperative game theory. |
---|---|
ISSN: | 1435-246X 1613-9178 |
DOI: | 10.1007/s10100-009-0096-0 |