Loading…

Kolmogorov's [epsi]-Entropy of Bounded Sets in Discrete Spaces and Attractors of Dissipative Lattice Systems

We obtain an estimate of the upper bound for Kolmogorov's [straight epsilon]-entropy for the bounded sets with small "tail" in discrete spaces, then we present a sufficient condition for the existence of a global attractor for dissipative lattice systems in a reflexive Banach discrete...

Full description

Saved in:
Bibliographic Details
Published in:Acta mathematica Sinica. English series 2007-02, Vol.23 (2), p.313
Main Authors: Zhou, Sheng Fan, Jia, Qiu Li, Shi, Wei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We obtain an estimate of the upper bound for Kolmogorov's [straight epsilon]-entropy for the bounded sets with small "tail" in discrete spaces, then we present a sufficient condition for the existence of a global attractor for dissipative lattice systems in a reflexive Banach discrete space and establish an upper bound of Kolmogorov's [straight epsilon]-entropy of the global attractor for lattice systems.[PUBLICATION ABSTRACT]
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-005-0871-3