Loading…

Stratovolcano stability assessment methods and results from Citlaltépetl, Mexico

Citlaltépetl volcano is the easternmost stratovolcano in the Trans-Mexican Volcanic Belt. Situated within 110 km of Veracruz, it has experienced two major collapse events and, subsequent to its last collapse, rebuilt a massive, symmetrical summit cone. To enhance hazard mitigation efforts we assess...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of volcanology 2004, Vol.66 (1), p.66-79
Main Authors: ZIMBELMAN, D. R, WATTERS, R. J, FIRTH, I. R, BREIT, G. N, CARRASCO-NUNEZ, G
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Citlaltépetl volcano is the easternmost stratovolcano in the Trans-Mexican Volcanic Belt. Situated within 110 km of Veracruz, it has experienced two major collapse events and, subsequent to its last collapse, rebuilt a massive, symmetrical summit cone. To enhance hazard mitigation efforts we assess the stability of Citlaltépetl's summit cone, the area thought most likely to fail during a potential massive collapse event. Through geologic mapping, alteration mineralogy, geotechnical studies, and stability modeling we provide important constraints on the likelihood, location, and size of a potential collapse event. The volcano's summit cone is young, highly fractured, and hydrothermally altered. Fractures are most abundant within 5-20-m wide zones defined by multiple parallel to subparallel fractures. Alteration is most pervasive within the fracture systems and includes acid sulfate, advanced argillic, argillic, and silicification ranks. Fractured and altered rocks both have significantly reduced rock strengths, representing likely bounding surfaces for future collapse events. The fracture systems and altered rock masses occur non-uniformly, as an orthogonal set with N-S and E-W trends. Because these surfaces occur non-uniformly, hazards associated with collapse are unevenly distributed about the volcano. Depending on uncertainties in bounding surfaces, but constrained by detailed field studies, potential failure volumes are estimated to range between 0.04-0.5 km^sup 3^. Stability modeling was used to assess potential edifice failure events. Modeled failure of the outer portion of the cone initially occurs as an "intact block" bounded by steeply dipping joints and outwardly dipping flow contacts. As collapse progresses, more of the inner cone fails and the outer "intact" block transforms into a collection of smaller blocks. Eventually, a steep face develops in the uppermost and central portion of the cone. This modeled failure morphology mimics collapse amphitheaters present at many of the world's stratovolcanoes that have experienced massive failure events.[PUBLICATION ABSTRACT]
ISSN:0258-8900
1432-0819
DOI:10.1007/s00445-003-0296-8