Loading…

Wave scattering by ice floes and polynyas of arbitrary shape

An efficient solution method is presented for linear and time-harmonic water-wave scattering by two classes of a three-dimensional hydroelastic system. In both cases, the fluid domain is of infinite horizontal extent and finite depth. The fluid surface is either open, except in a finite region where...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2010-11, Vol.662, p.5-35
Main Authors: BENNETTS, L. G., WILLIAMS, T. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An efficient solution method is presented for linear and time-harmonic water-wave scattering by two classes of a three-dimensional hydroelastic system. In both cases, the fluid domain is of infinite horizontal extent and finite depth. The fluid surface is either open, except in a finite region where it is covered by a thin-elastic plate, which represents an ice floe, or fully covered by a plate, except in a finite region where it is open, which represents an ice polynya. The approach outlined herein permits the boundary between the ice-covered and free-surface fluid regions to be described by an arbitrary smooth curve. To solve the governing equations of the full three-dimensional linear problem, they are first projected onto the horizontal plane by using an approximation theory that combines an expansion of the vertical motion of the fluid in a finite set of judiciously chosen modes with a variational principle. This generates a system of two-dimensional partial differential equations that are converted into a set of one-dimensional integro-differential equations using matrices of Green's functions, which are solved numerically through an application of the Galerkin technique. A numerical results section justifies the consideration of an arbitrarily shaped boundary by comparing the response of differently shaped floes and polynyas over a range of relevant wavenumbers. Comparisons are made in terms of the magnitude and direction of the far-field scattering response, and also the maximum average curvature of the floe and the maximum wave elevation within the polynya.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112010004039