Loading…
Rare event asymptotics for a random walk in the quarter plane
This paper presents a novel technique for deriving asymptotic expressions for the occurrence of rare events for a random walk in the quarter plane. In particular, we study a tandem queue with Poisson arrivals, exponential service times and coupled processors. The service rate for one queue is only a...
Saved in:
Published in: | Queueing systems 2011-01, Vol.67 (1), p.1-32 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a novel technique for deriving asymptotic expressions for the occurrence of rare events for a random walk in the quarter plane. In particular, we study a tandem queue with Poisson arrivals, exponential service times and coupled processors. The service rate for one queue is only a fraction of the global service rate when the other queue is non-empty; when one queue is empty, the other queue has full service rate. The bivariate generating function of the queue lengths gives rise to a functional equation. In order to derive asymptotic expressions for large queue lengths, we combine the kernel method for functional equations with boundary value problems and singularity analysis. |
---|---|
ISSN: | 0257-0130 1572-9443 |
DOI: | 10.1007/s11134-010-9197-7 |