Loading…
Multiple Change-Point Estimation With a Total Variation Penalty
We propose a new approach for dealing with the estimation of the location of change-points in one-dimensional piecewise constant signals observed in white noise. Our approach consists in reframing this task in a variable selection context. We use a penalized least-square criterion with a ℓ 1 -type p...
Saved in:
Published in: | Journal of the American Statistical Association 2010-12, Vol.105 (492), p.1480-1493 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a new approach for dealing with the estimation of the location of change-points in one-dimensional piecewise constant signals observed in white noise. Our approach consists in reframing this task in a variable selection context. We use a penalized least-square criterion with a ℓ
1
-type penalty for this purpose. We explain how to implement this method in practice by using the LARS / LASSO algorithm. We then prove that, in an appropriate asymptotic framework, this method provides consistent estimators of the change points with an almost optimal rate. We finally provide an improved practical version of this method by combining it with a reduced version of the dynamic programming algorithm and we successfully compare it with classical methods. |
---|---|
ISSN: | 0162-1459 1537-274X |
DOI: | 10.1198/jasa.2010.tm09181 |