Loading…
On p-Laplace equations with concave terms and asymmetric perturbations
We consider a nonlinear Dirichlet problem driven by the p-Laplace differential operator with a concave term and a nonlinear perturbation, which exhibits an asymmetric behaviour near +∞ and near −∞. Namely, it is (p − 1)-superlinear on ℝ+ and (p − 1)-(sub)linear on ℝ−. Using variational methods based...
Saved in:
Published in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2011-02, Vol.141 (1), p.171-192 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a nonlinear Dirichlet problem driven by the p-Laplace differential operator with a concave term and a nonlinear perturbation, which exhibits an asymmetric behaviour near +∞ and near −∞. Namely, it is (p − 1)-superlinear on ℝ+ and (p − 1)-(sub)linear on ℝ−. Using variational methods based on the critical point theory together with truncation techniques, Ekeland's variational principle, Morse theory and the lower-and-upper-solutions approach, we show that the problem has at least four non-trivial smooth solutions. Also, we provide precise information about the sign of these solutions: two are positive, one is negative and one is nodal (sign changing). |
---|---|
ISSN: | 0308-2105 1473-7124 |
DOI: | 10.1017/S0308210509001656 |