Loading…
Convergent perturbative power series solution of the stationary Maxwell–Born–Infeld field equations with regular sources
The stationary Maxwell–Born–Infeld field equations of electromagnetism with regular sources \documentclass[12pt]{minimal}\begin{document}$\rho \in (C^\alpha _0\cap L^1)({\mathbb R}^3)$\end{document} ρ ∈ ( C 0 α ∩ L 1 ) ( R 3 ) and \documentclass[12pt]{minimal}\begin{document}$j\in (C^\alpha _0\cap L...
Saved in:
Published in: | Journal of mathematical physics 2011-02, Vol.52 (2), p.022902-022902-16 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The stationary Maxwell–Born–Infeld field equations of electromagnetism with regular sources
\documentclass[12pt]{minimal}\begin{document}$\rho \in (C^\alpha _0\cap L^1)({\mathbb R}^3)$\end{document}
ρ
∈
(
C
0
α
∩
L
1
)
(
R
3
)
and
\documentclass[12pt]{minimal}\begin{document}$j\in (C^\alpha _0\cap L^1)({\mathbb R}^3)$\end{document}
j
∈
(
C
0
α
∩
L
1
)
(
R
3
)
(componentwise) are solved using a perturbation series expansion in powers of Born's electromagnetic constant. The convergence in
\documentclass[12pt]{minimal}\begin{document}$C^{1,\alpha }_0$\end{document}
C
0
1
,
α
of the power series for the fields is proved with the help of Banach algebra arguments and complex analysis. The finite radius of convergence depends on the “
\documentclass[12pt]{minimal}\begin{document}$C^{1,\alpha }_0$\end{document}
C
0
1
,
α
size” of both, the Coulomb field generated by ρ and the Ampère field generated by j. No symmetry is assumed. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.3548079 |