Loading…

Convergent perturbative power series solution of the stationary Maxwell–Born–Infeld field equations with regular sources

The stationary Maxwell–Born–Infeld field equations of electromagnetism with regular sources \documentclass[12pt]{minimal}\begin{document}$\rho \in (C^\alpha _0\cap L^1)({\mathbb R}^3)$\end{document} ρ ∈ ( C 0 α ∩ L 1 ) ( R 3 ) and \documentclass[12pt]{minimal}\begin{document}$j\in (C^\alpha _0\cap L...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2011-02, Vol.52 (2), p.022902-022902-16
Main Author: Kiessling, M. K.-H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The stationary Maxwell–Born–Infeld field equations of electromagnetism with regular sources \documentclass[12pt]{minimal}\begin{document}$\rho \in (C^\alpha _0\cap L^1)({\mathbb R}^3)$\end{document} ρ ∈ ( C 0 α ∩ L 1 ) ( R 3 ) and \documentclass[12pt]{minimal}\begin{document}$j\in (C^\alpha _0\cap L^1)({\mathbb R}^3)$\end{document} j ∈ ( C 0 α ∩ L 1 ) ( R 3 ) (componentwise) are solved using a perturbation series expansion in powers of Born's electromagnetic constant. The convergence in \documentclass[12pt]{minimal}\begin{document}$C^{1,\alpha }_0$\end{document} C 0 1 , α of the power series for the fields is proved with the help of Banach algebra arguments and complex analysis. The finite radius of convergence depends on the “ \documentclass[12pt]{minimal}\begin{document}$C^{1,\alpha }_0$\end{document} C 0 1 , α size” of both, the Coulomb field generated by ρ and the Ampère field generated by j. No symmetry is assumed.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.3548079