Loading…

On the regularization mechanism for the periodic Korteweg-de Vries equation

In this paper we develop and use successive averaging methods for explaining the regularization mechanism in the the periodic Korteweg–de Vries (KdV) equation in the homogeneous Sobolev spaces Ḣs for s ≥ 0. Specifically, we prove the global existence, uniqueness, and Lipschitz‐continuous dependence...

Full description

Saved in:
Bibliographic Details
Published in:Communications on pure and applied mathematics 2011-05, Vol.64 (5), p.591-648
Main Authors: Babin, Anatoli V., Ilyin, Alexei A., Titi, Edriss S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we develop and use successive averaging methods for explaining the regularization mechanism in the the periodic Korteweg–de Vries (KdV) equation in the homogeneous Sobolev spaces Ḣs for s ≥ 0. Specifically, we prove the global existence, uniqueness, and Lipschitz‐continuous dependence on the initial data of the solutions of the periodic KdV. For the case where the initial data is in L2 we also show the Lipschitz‐continuous dependence of these solutions with respect to the initial data as maps from Ḣs to Ḣs for s ∈(−1,0]. © 2010 Wiley Periodicals, Inc.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.20356