Loading…
Analytical and Numerical Techniques for Solving Laplace and Poisson Equations in a Tubular Permanent Magnet Actuator: Part II. Schwarz-Christoffel Mapping
In Part I of the paper, we derive a semianalytical framework for the magnetic field calculation in the air gap of a tubular permanent-magnet (PM) actuator. We also make an extension for skewed topologies. However, the slotting effect and its related cogging force cannot be determined in a straightfo...
Saved in:
Published in: | IEEE transactions on magnetics 2008-07, Vol.44 (7), p.1761-1767 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In Part I of the paper, we derive a semianalytical framework for the magnetic field calculation in the air gap of a tubular permanent-magnet (PM) actuator. We also make an extension for skewed topologies. However, the slotting effect and its related cogging force cannot be determined in a straightforward way. Therefore, in Part II, we apply the Schwarz-Christoffel (SC) conformal mapping method to one pole-pair of the tubular PM actuator. This mapping allows for field calculation in a domain where standard field solutions can be used. In this way, slotting effects can be taken into account; however, skewing cannot be implemented directly. The SC-conformal mapping method is valid only for two-dimensional Cartesian domains. We therefore apply a special transformation from the cylindrical to the Cartesian coordinate system to describe the tubular actuator as a linear actuator. |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2008.923438 |