Loading…
Platinum nanocrystals selectively shaped using facet-specific peptide sequences
The properties of a nanocrystal are heavily influenced by its shape. Shape control of a colloidal nanocrystal is believed to be a kinetic process, with high-energy facets growing faster then vanishing, leading to nanocrystals enclosed by low-energy facets. Identifying a surfactant that can specifica...
Saved in:
Published in: | Nature chemistry 2011-05, Vol.3 (5), p.393-399 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The properties of a nanocrystal are heavily influenced by its shape. Shape control of a colloidal nanocrystal is believed to be a kinetic process, with high-energy facets growing faster then vanishing, leading to nanocrystals enclosed by low-energy facets. Identifying a surfactant that can specifically bind to a particular crystal facet is critical, but has proved challenging to date. Biomolecules have exquisite specific molecular recognition properties that can be explored for the precise engineering of nanostructured materials. Here, we report the use of facet-specific peptide sequences as regulating agents for the predictable synthesis of platinum nanocrystals with selectively exposed crystal surfaces and particular shapes. The formation of platinum nanocubes and nanotetrahedrons are demonstrated with Pt-{100} and Pt-{111} binding peptides, respectively. Our studies unambiguously demonstrate the abilities of facet-selective binding peptides in determining nanocrystal shape, representing a critical step forward in the use of biomolecules for programmable synthesis of nanostructures.
Crystal growth in nature is controlled by biomolecules to produce precisely engineered crystal shapes. Now, facet-specific peptide sequences that have been rationally selected through a biomimetic evolution process are used as regulating agents for predictable synthesis of platinum nanocrystals with selectively exposed crystal surfaces. |
---|---|
ISSN: | 1755-4330 1755-4349 |
DOI: | 10.1038/nchem.1025 |