Loading…

Quantum Pieri rules for isotropic Grassmannians

We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology...

Full description

Saved in:
Bibliographic Details
Published in:Inventiones mathematicae 2009-11, Vol.178 (2), p.345-405
Main Authors: Buch, Anders Skovsted, Kresch, Andrew, Tamvakis, Harry
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-bc00f84f888820de9f523c604fe0572b95e72e2b060752d67eafe1b8efcd3783
cites cdi_FETCH-LOGICAL-c315t-bc00f84f888820de9f523c604fe0572b95e72e2b060752d67eafe1b8efcd3783
container_end_page 405
container_issue 2
container_start_page 345
container_title Inventiones mathematicae
container_volume 178
creator Buch, Anders Skovsted
Kresch, Andrew
Tamvakis, Harry
description We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology ring of these varieties, which give a combinatorial formula for the product of any Schubert class with certain special Schubert classes. We also give presentations of these rings, with integer coefficients, in terms of special Schubert class generators and relations.
doi_str_mv 10.1007/s00222-009-0201-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881391645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418689241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-bc00f84f888820de9f523c604fe0572b95e72e2b060752d67eafe1b8efcd3783</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLfgfe3s5GOzRylahYIKvS-bZFZSmqTuJIf-e7dE8ORc3sP7MfAIca_gUQHoFQMgogQwEhCUPF2IhcpSlAqNvhSLaIM0RsG1uGHeA0RT40KsPifXj1OXfLQU2iRMB-LEDyFpeRjDcGzrZBMcc-f6vnU934or7w5Md7-6FLuX5936VW7fN2_rp62sU5WPsqoBfJn5Mh5CQ8bnmNYFZJ4g11iZnDQSVlCAzrEpNDlPqirJ102qy3QpHubZYxi-J-LR7ocp9PGjLUuVGlVkeQypOVSHgTmQt8fQdi6crAJ7pmJnKjZSsWcq9hQ7OHc4ZvsvCn_D_5d-ADsWZIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881391645</pqid></control><display><type>article</type><title>Quantum Pieri rules for isotropic Grassmannians</title><source>Springer Link</source><creator>Buch, Anders Skovsted ; Kresch, Andrew ; Tamvakis, Harry</creator><creatorcontrib>Buch, Anders Skovsted ; Kresch, Andrew ; Tamvakis, Harry</creatorcontrib><description>We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology ring of these varieties, which give a combinatorial formula for the product of any Schubert class with certain special Schubert classes. We also give presentations of these rings, with integer coefficients, in terms of special Schubert class generators and relations.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-009-0201-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Inventiones mathematicae, 2009-11, Vol.178 (2), p.345-405</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-bc00f84f888820de9f523c604fe0572b95e72e2b060752d67eafe1b8efcd3783</citedby><cites>FETCH-LOGICAL-c315t-bc00f84f888820de9f523c604fe0572b95e72e2b060752d67eafe1b8efcd3783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Buch, Anders Skovsted</creatorcontrib><creatorcontrib>Kresch, Andrew</creatorcontrib><creatorcontrib>Tamvakis, Harry</creatorcontrib><title>Quantum Pieri rules for isotropic Grassmannians</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology ring of these varieties, which give a combinatorial formula for the product of any Schubert class with certain special Schubert classes. We also give presentations of these rings, with integer coefficients, in terms of special Schubert class generators and relations.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLfgfe3s5GOzRylahYIKvS-bZFZSmqTuJIf-e7dE8ORc3sP7MfAIca_gUQHoFQMgogQwEhCUPF2IhcpSlAqNvhSLaIM0RsG1uGHeA0RT40KsPifXj1OXfLQU2iRMB-LEDyFpeRjDcGzrZBMcc-f6vnU934or7w5Md7-6FLuX5936VW7fN2_rp62sU5WPsqoBfJn5Mh5CQ8bnmNYFZJ4g11iZnDQSVlCAzrEpNDlPqirJ102qy3QpHubZYxi-J-LR7ocp9PGjLUuVGlVkeQypOVSHgTmQt8fQdi6crAJ7pmJnKjZSsWcq9hQ7OHc4ZvsvCn_D_5d-ADsWZIg</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Buch, Anders Skovsted</creator><creator>Kresch, Andrew</creator><creator>Tamvakis, Harry</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20091101</creationdate><title>Quantum Pieri rules for isotropic Grassmannians</title><author>Buch, Anders Skovsted ; Kresch, Andrew ; Tamvakis, Harry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-bc00f84f888820de9f523c604fe0572b95e72e2b060752d67eafe1b8efcd3783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buch, Anders Skovsted</creatorcontrib><creatorcontrib>Kresch, Andrew</creatorcontrib><creatorcontrib>Tamvakis, Harry</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buch, Anders Skovsted</au><au>Kresch, Andrew</au><au>Tamvakis, Harry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Pieri rules for isotropic Grassmannians</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>178</volume><issue>2</issue><spage>345</spage><epage>405</epage><pages>345-405</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology ring of these varieties, which give a combinatorial formula for the product of any Schubert class with certain special Schubert classes. We also give presentations of these rings, with integer coefficients, in terms of special Schubert class generators and relations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00222-009-0201-y</doi><tpages>61</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-9910
ispartof Inventiones mathematicae, 2009-11, Vol.178 (2), p.345-405
issn 0020-9910
1432-1297
language eng
recordid cdi_proquest_journals_881391645
source Springer Link
subjects Mathematics
Mathematics and Statistics
title Quantum Pieri rules for isotropic Grassmannians
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Pieri%20rules%20for%20isotropic%20Grassmannians&rft.jtitle=Inventiones%20mathematicae&rft.au=Buch,%20Anders%20Skovsted&rft.date=2009-11-01&rft.volume=178&rft.issue=2&rft.spage=345&rft.epage=405&rft.pages=345-405&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-009-0201-y&rft_dat=%3Cproquest_cross%3E2418689241%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-bc00f84f888820de9f523c604fe0572b95e72e2b060752d67eafe1b8efcd3783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=881391645&rft_id=info:pmid/&rfr_iscdi=true