Loading…
Quantum Pieri rules for isotropic Grassmannians
We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology...
Saved in:
Published in: | Inventiones mathematicae 2009-11, Vol.178 (2), p.345-405 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c315t-bc00f84f888820de9f523c604fe0572b95e72e2b060752d67eafe1b8efcd3783 |
---|---|
cites | cdi_FETCH-LOGICAL-c315t-bc00f84f888820de9f523c604fe0572b95e72e2b060752d67eafe1b8efcd3783 |
container_end_page | 405 |
container_issue | 2 |
container_start_page | 345 |
container_title | Inventiones mathematicae |
container_volume | 178 |
creator | Buch, Anders Skovsted Kresch, Andrew Tamvakis, Harry |
description | We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology ring of these varieties, which give a combinatorial formula for the product of any Schubert class with certain special Schubert classes. We also give presentations of these rings, with integer coefficients, in terms of special Schubert class generators and relations. |
doi_str_mv | 10.1007/s00222-009-0201-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_881391645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418689241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-bc00f84f888820de9f523c604fe0572b95e72e2b060752d67eafe1b8efcd3783</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLfgfe3s5GOzRylahYIKvS-bZFZSmqTuJIf-e7dE8ORc3sP7MfAIca_gUQHoFQMgogQwEhCUPF2IhcpSlAqNvhSLaIM0RsG1uGHeA0RT40KsPifXj1OXfLQU2iRMB-LEDyFpeRjDcGzrZBMcc-f6vnU934or7w5Md7-6FLuX5936VW7fN2_rp62sU5WPsqoBfJn5Mh5CQ8bnmNYFZJ4g11iZnDQSVlCAzrEpNDlPqirJ102qy3QpHubZYxi-J-LR7ocp9PGjLUuVGlVkeQypOVSHgTmQt8fQdi6crAJ7pmJnKjZSsWcq9hQ7OHc4ZvsvCn_D_5d-ADsWZIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881391645</pqid></control><display><type>article</type><title>Quantum Pieri rules for isotropic Grassmannians</title><source>Springer Link</source><creator>Buch, Anders Skovsted ; Kresch, Andrew ; Tamvakis, Harry</creator><creatorcontrib>Buch, Anders Skovsted ; Kresch, Andrew ; Tamvakis, Harry</creatorcontrib><description>We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology ring of these varieties, which give a combinatorial formula for the product of any Schubert class with certain special Schubert classes. We also give presentations of these rings, with integer coefficients, in terms of special Schubert class generators and relations.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-009-0201-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Inventiones mathematicae, 2009-11, Vol.178 (2), p.345-405</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-bc00f84f888820de9f523c604fe0572b95e72e2b060752d67eafe1b8efcd3783</citedby><cites>FETCH-LOGICAL-c315t-bc00f84f888820de9f523c604fe0572b95e72e2b060752d67eafe1b8efcd3783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Buch, Anders Skovsted</creatorcontrib><creatorcontrib>Kresch, Andrew</creatorcontrib><creatorcontrib>Tamvakis, Harry</creatorcontrib><title>Quantum Pieri rules for isotropic Grassmannians</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology ring of these varieties, which give a combinatorial formula for the product of any Schubert class with certain special Schubert classes. We also give presentations of these rings, with integer coefficients, in terms of special Schubert class generators and relations.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLfgfe3s5GOzRylahYIKvS-bZFZSmqTuJIf-e7dE8ORc3sP7MfAIca_gUQHoFQMgogQwEhCUPF2IhcpSlAqNvhSLaIM0RsG1uGHeA0RT40KsPifXj1OXfLQU2iRMB-LEDyFpeRjDcGzrZBMcc-f6vnU934or7w5Md7-6FLuX5936VW7fN2_rp62sU5WPsqoBfJn5Mh5CQ8bnmNYFZJ4g11iZnDQSVlCAzrEpNDlPqirJ102qy3QpHubZYxi-J-LR7ocp9PGjLUuVGlVkeQypOVSHgTmQt8fQdi6crAJ7pmJnKjZSsWcq9hQ7OHc4ZvsvCn_D_5d-ADsWZIg</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Buch, Anders Skovsted</creator><creator>Kresch, Andrew</creator><creator>Tamvakis, Harry</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20091101</creationdate><title>Quantum Pieri rules for isotropic Grassmannians</title><author>Buch, Anders Skovsted ; Kresch, Andrew ; Tamvakis, Harry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-bc00f84f888820de9f523c604fe0572b95e72e2b060752d67eafe1b8efcd3783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buch, Anders Skovsted</creatorcontrib><creatorcontrib>Kresch, Andrew</creatorcontrib><creatorcontrib>Tamvakis, Harry</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buch, Anders Skovsted</au><au>Kresch, Andrew</au><au>Tamvakis, Harry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Pieri rules for isotropic Grassmannians</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>178</volume><issue>2</issue><spage>345</spage><epage>405</epage><pages>345-405</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology ring of these varieties, which give a combinatorial formula for the product of any Schubert class with certain special Schubert classes. We also give presentations of these rings, with integer coefficients, in terms of special Schubert class generators and relations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00222-009-0201-y</doi><tpages>61</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-9910 |
ispartof | Inventiones mathematicae, 2009-11, Vol.178 (2), p.345-405 |
issn | 0020-9910 1432-1297 |
language | eng |
recordid | cdi_proquest_journals_881391645 |
source | Springer Link |
subjects | Mathematics Mathematics and Statistics |
title | Quantum Pieri rules for isotropic Grassmannians |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Pieri%20rules%20for%20isotropic%20Grassmannians&rft.jtitle=Inventiones%20mathematicae&rft.au=Buch,%20Anders%20Skovsted&rft.date=2009-11-01&rft.volume=178&rft.issue=2&rft.spage=345&rft.epage=405&rft.pages=345-405&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-009-0201-y&rft_dat=%3Cproquest_cross%3E2418689241%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-bc00f84f888820de9f523c604fe0572b95e72e2b060752d67eafe1b8efcd3783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=881391645&rft_id=info:pmid/&rfr_iscdi=true |