Loading…
On the stability of Riemannian manifold with parallel spinors
Inspired by the recent work [HHM03], we prove two stability results for compact Riemannian manifolds with nonzero parallel spinors. Our first result says that Ricci flat metrics which also admit nonzero parallel spinors are stable (in the direction of changes in conformal structures) as the critical...
Saved in:
Published in: | Inventiones mathematicae 2005-07, Vol.161 (1), p.151-176 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inspired by the recent work [HHM03], we prove two stability results for compact Riemannian manifolds with nonzero parallel spinors. Our first result says that Ricci flat metrics which also admit nonzero parallel spinors are stable (in the direction of changes in conformal structures) as the critical points of the total scalar curvature functional. Our second result, which is a local version of the first one, shows that any metric of positive scalar curvature cannot lie too close to a metric with nonzero parallel spinor. We also prove a rigidity result for special holonomy metrics. In the case of SU(m) holonomy, the rigidity result implies that scalar flat deformations of Calabi-Yau metric must be Calabi-Yau. Finally we explore the connection with a positive mass theorem of [D03], which presents another approach to proving these stability and rigidity results. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-004-0424-x |