Loading…
A variational approximation scheme for three-dimensional elastodynamics with polyconvex energy
We construct a variational approximation scheme for the equations of three-dimensional elastodynamics with polyconvex stored energy. The scheme is motivated by some recently discovered geometric identities (Qin [18]) for the null Lagrangians (the determinant and cofactor matrix), and by an associate...
Saved in:
Published in: | Archive for rational mechanics and analysis 2001-05, Vol.157 (4), p.325-344 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We construct a variational approximation scheme for the equations of three-dimensional elastodynamics with polyconvex stored energy. The scheme is motivated by some recently discovered geometric identities (Qin [18]) for the null Lagrangians (the determinant and cofactor matrix), and by an associated embedding of the equations of elastodynamics into an enlarged system which is endowed with a convex entropy. The scheme decreases the energy, and its solvability is reduced to the solution of a constrained convex minimization problem. We prove that the approximating process admits regular weak solutions, which in the limit produce a measure-valued solution for polyconvex elastodynamics that satisfies the classical weak form of the geometric identities. This latter property is related to the weak continuity properties of minors of Jacobian matrices, here exploited in a time-dependent setting.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s002050100137 |