Loading…
Variations on the Roy-Gallai theorem
A generalization of the Roy-Gallai Theorem on the chromatic number of a graph is derived which is also an extension of several other results of Berge and of Li. A simple inductive proof is given which provides a direct way of deriving the Theorem of Li. We also show that some classical results valid...
Saved in:
Published in: | 4OR 2005-09, Vol.3 (3), p.243-251 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A generalization of the Roy-Gallai Theorem on the chromatic number of a graph is derived which is also an extension of several other results of Berge and of Li. A simple inductive proof is given which provides a direct way of deriving the Theorem of Li. We also show that some classical results valid for optimal colorings cannot be transposed to suboptimal colorings. We finally investigate some elementary properties which are also valid in suboptimal colorings. |
---|---|
ISSN: | 1619-4500 1614-2411 |
DOI: | 10.1007/s10288-004-0043-9 |