Loading…

The influence of processor architecture on the design and the results of WCET tools

The architecture of tools for the determination of worst case execution times (WCETs) as well as the precision of the results of WCET analyses strongly depend on the architecture of the employed processor. The cache replacement strategy influences the results of cache behavior prediction; out-of-ord...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the IEEE 2003-07, Vol.91 (7), p.1038-1054
Main Authors: Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The architecture of tools for the determination of worst case execution times (WCETs) as well as the precision of the results of WCET analyses strongly depend on the architecture of the employed processor. The cache replacement strategy influences the results of cache behavior prediction; out-of-order execution and control speculation introduce interferences between processor components, e.g., caches, pipelines, and branch prediction units. These interferences forbid modular designs of WCET tools, which would execute the subtasks of WCET analysis consecutively. Instead, complex integrated designs are needed, resulting in high demand for memory space and analysis time. We have implemented WCET tools for a series of increasingly complex processors: SuperSPARC, Motorola ColdFire 5307, and Motorola PowerPC 755. In this paper, we describe the designs of these tools, report our results and the lessons learned, and give some advice as to the predictability of processor architectures.
ISSN:0018-9219
1558-2256
DOI:10.1109/JPROC.2003.814618