Loading…

Noise-constrained least mean squares algorithm

We consider the design of an adaptive algorithm for finite impulse response channel estimation, which incorporates partial knowledge of the channel, specifically, the additive noise variance. Although the noise variance is not required for the offline Wiener solution, there are potential benefits (a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2001-09, Vol.49 (9), p.1961-1970
Main Authors: Yongbin Wei, Gelfand, S.B., Krogmeier, J.V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the design of an adaptive algorithm for finite impulse response channel estimation, which incorporates partial knowledge of the channel, specifically, the additive noise variance. Although the noise variance is not required for the offline Wiener solution, there are potential benefits (and limitations) for the learning behavior of an adaptive solution. In our approach, a Robbins-Monro algorithm is used to minimize the conventional mean square error criterion subject to a noise variance constraint and a penalty term necessary to guarantee uniqueness of the combined weight/multiplier solution. The resulting noise-constrained LMS (NCLMS) algorithm is a type of variable step-size LMS algorithm where the step-size rule arises naturally from the constraints. A convergence and performance analysis is carried out, and extensive simulations are conducted that compare NCLMS with several adaptive algorithms. This work also provides an appropriate framework for the derivation and analysis of other adaptive algorithms that incorporate partial knowledge of the channel.
ISSN:1053-587X
1941-0476
DOI:10.1109/78.942625