Loading…
Noise-constrained least mean squares algorithm
We consider the design of an adaptive algorithm for finite impulse response channel estimation, which incorporates partial knowledge of the channel, specifically, the additive noise variance. Although the noise variance is not required for the offline Wiener solution, there are potential benefits (a...
Saved in:
Published in: | IEEE transactions on signal processing 2001-09, Vol.49 (9), p.1961-1970 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-63481e986566890ad9c5ba28b0dc72454da5b2bb2674f8690f52ad4563aa0713 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-63481e986566890ad9c5ba28b0dc72454da5b2bb2674f8690f52ad4563aa0713 |
container_end_page | 1970 |
container_issue | 9 |
container_start_page | 1961 |
container_title | IEEE transactions on signal processing |
container_volume | 49 |
creator | Yongbin Wei Gelfand, S.B. Krogmeier, J.V. |
description | We consider the design of an adaptive algorithm for finite impulse response channel estimation, which incorporates partial knowledge of the channel, specifically, the additive noise variance. Although the noise variance is not required for the offline Wiener solution, there are potential benefits (and limitations) for the learning behavior of an adaptive solution. In our approach, a Robbins-Monro algorithm is used to minimize the conventional mean square error criterion subject to a noise variance constraint and a penalty term necessary to guarantee uniqueness of the combined weight/multiplier solution. The resulting noise-constrained LMS (NCLMS) algorithm is a type of variable step-size LMS algorithm where the step-size rule arises naturally from the constraints. A convergence and performance analysis is carried out, and extensive simulations are conducted that compare NCLMS with several adaptive algorithms. This work also provides an appropriate framework for the derivation and analysis of other adaptive algorithms that incorporate partial knowledge of the channel. |
doi_str_mv | 10.1109/78.942625 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_884632249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>942625</ieee_id><sourcerecordid>914653583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-63481e986566890ad9c5ba28b0dc72454da5b2bb2674f8690f52ad4563aa0713</originalsourceid><addsrcrecordid>eNqF0TtLxEAQB_AgCp6nha1VEFEscu5j9lXK4QsOba6wWyabjebIJeduUvjtzZFDwUKrGZjf_GGYJDmlZEYpMTdKzwwwycReMqEGaEZAyf2hJ4JnQqvXw-QoxhUhFMDISTJ7bqvoM9c2sQtYNb5Ia4-xS9cemzR-9Bh8TLF-a0PVva-Pk4MS6-hPdnWaLO_vlvPHbPHy8DS_XWQOJOsyyUFTb7QUUmpDsDBO5Mh0TgqnGAgoUOQsz5lUUGppSCkYFiAkRySK8mlyNcZuQvvR-9jZdRWdr2tsfNtHayhIwYXmg7z8UzINwLUk_0OpheJkC89_wVXbh2a41moNkjMGZkDXI3KhjTH40m5CtcbwaSmx20dYpe34iMFe7AIxOqzLgI2r4s8C5UwbNbCzkVXe--_pLuMLZBmMrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884632249</pqid></control><display><type>article</type><title>Noise-constrained least mean squares algorithm</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yongbin Wei ; Gelfand, S.B. ; Krogmeier, J.V.</creator><creatorcontrib>Yongbin Wei ; Gelfand, S.B. ; Krogmeier, J.V.</creatorcontrib><description>We consider the design of an adaptive algorithm for finite impulse response channel estimation, which incorporates partial knowledge of the channel, specifically, the additive noise variance. Although the noise variance is not required for the offline Wiener solution, there are potential benefits (and limitations) for the learning behavior of an adaptive solution. In our approach, a Robbins-Monro algorithm is used to minimize the conventional mean square error criterion subject to a noise variance constraint and a penalty term necessary to guarantee uniqueness of the combined weight/multiplier solution. The resulting noise-constrained LMS (NCLMS) algorithm is a type of variable step-size LMS algorithm where the step-size rule arises naturally from the constraints. A convergence and performance analysis is carried out, and extensive simulations are conducted that compare NCLMS with several adaptive algorithms. This work also provides an appropriate framework for the derivation and analysis of other adaptive algorithms that incorporate partial knowledge of the channel.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.942625</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive algorithm ; Adaptive algorithms ; Additive noise ; Additive white noise ; Algorithm design and analysis ; Algorithms ; Applied sciences ; AWGN ; Channel estimation ; Channels ; Computer simulation ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Gaussian noise ; Impulse response ; Information, signal and communications theory ; Least mean squares algorithm ; Least squares approximation ; Mean square error methods ; Noise ; Signal and communications theory ; Signal processing algorithms ; Signal, noise ; Studies ; Telecommunications and information theory ; Variance</subject><ispartof>IEEE transactions on signal processing, 2001-09, Vol.49 (9), p.1961-1970</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-63481e986566890ad9c5ba28b0dc72454da5b2bb2674f8690f52ad4563aa0713</citedby><cites>FETCH-LOGICAL-c462t-63481e986566890ad9c5ba28b0dc72454da5b2bb2674f8690f52ad4563aa0713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/942625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1132897$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yongbin Wei</creatorcontrib><creatorcontrib>Gelfand, S.B.</creatorcontrib><creatorcontrib>Krogmeier, J.V.</creatorcontrib><title>Noise-constrained least mean squares algorithm</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We consider the design of an adaptive algorithm for finite impulse response channel estimation, which incorporates partial knowledge of the channel, specifically, the additive noise variance. Although the noise variance is not required for the offline Wiener solution, there are potential benefits (and limitations) for the learning behavior of an adaptive solution. In our approach, a Robbins-Monro algorithm is used to minimize the conventional mean square error criterion subject to a noise variance constraint and a penalty term necessary to guarantee uniqueness of the combined weight/multiplier solution. The resulting noise-constrained LMS (NCLMS) algorithm is a type of variable step-size LMS algorithm where the step-size rule arises naturally from the constraints. A convergence and performance analysis is carried out, and extensive simulations are conducted that compare NCLMS with several adaptive algorithms. This work also provides an appropriate framework for the derivation and analysis of other adaptive algorithms that incorporate partial knowledge of the channel.</description><subject>Adaptive algorithm</subject><subject>Adaptive algorithms</subject><subject>Additive noise</subject><subject>Additive white noise</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>AWGN</subject><subject>Channel estimation</subject><subject>Channels</subject><subject>Computer simulation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>Impulse response</subject><subject>Information, signal and communications theory</subject><subject>Least mean squares algorithm</subject><subject>Least squares approximation</subject><subject>Mean square error methods</subject><subject>Noise</subject><subject>Signal and communications theory</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Variance</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqF0TtLxEAQB_AgCp6nha1VEFEscu5j9lXK4QsOba6wWyabjebIJeduUvjtzZFDwUKrGZjf_GGYJDmlZEYpMTdKzwwwycReMqEGaEZAyf2hJ4JnQqvXw-QoxhUhFMDISTJ7bqvoM9c2sQtYNb5Ia4-xS9cemzR-9Bh8TLF-a0PVva-Pk4MS6-hPdnWaLO_vlvPHbPHy8DS_XWQOJOsyyUFTb7QUUmpDsDBO5Mh0TgqnGAgoUOQsz5lUUGppSCkYFiAkRySK8mlyNcZuQvvR-9jZdRWdr2tsfNtHayhIwYXmg7z8UzINwLUk_0OpheJkC89_wVXbh2a41moNkjMGZkDXI3KhjTH40m5CtcbwaSmx20dYpe34iMFe7AIxOqzLgI2r4s8C5UwbNbCzkVXe--_pLuMLZBmMrQ</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Yongbin Wei</creator><creator>Gelfand, S.B.</creator><creator>Krogmeier, J.V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010901</creationdate><title>Noise-constrained least mean squares algorithm</title><author>Yongbin Wei ; Gelfand, S.B. ; Krogmeier, J.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-63481e986566890ad9c5ba28b0dc72454da5b2bb2674f8690f52ad4563aa0713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adaptive algorithm</topic><topic>Adaptive algorithms</topic><topic>Additive noise</topic><topic>Additive white noise</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>AWGN</topic><topic>Channel estimation</topic><topic>Channels</topic><topic>Computer simulation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>Impulse response</topic><topic>Information, signal and communications theory</topic><topic>Least mean squares algorithm</topic><topic>Least squares approximation</topic><topic>Mean square error methods</topic><topic>Noise</topic><topic>Signal and communications theory</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yongbin Wei</creatorcontrib><creatorcontrib>Gelfand, S.B.</creatorcontrib><creatorcontrib>Krogmeier, J.V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yongbin Wei</au><au>Gelfand, S.B.</au><au>Krogmeier, J.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-constrained least mean squares algorithm</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2001-09-01</date><risdate>2001</risdate><volume>49</volume><issue>9</issue><spage>1961</spage><epage>1970</epage><pages>1961-1970</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We consider the design of an adaptive algorithm for finite impulse response channel estimation, which incorporates partial knowledge of the channel, specifically, the additive noise variance. Although the noise variance is not required for the offline Wiener solution, there are potential benefits (and limitations) for the learning behavior of an adaptive solution. In our approach, a Robbins-Monro algorithm is used to minimize the conventional mean square error criterion subject to a noise variance constraint and a penalty term necessary to guarantee uniqueness of the combined weight/multiplier solution. The resulting noise-constrained LMS (NCLMS) algorithm is a type of variable step-size LMS algorithm where the step-size rule arises naturally from the constraints. A convergence and performance analysis is carried out, and extensive simulations are conducted that compare NCLMS with several adaptive algorithms. This work also provides an appropriate framework for the derivation and analysis of other adaptive algorithms that incorporate partial knowledge of the channel.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.942625</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2001-09, Vol.49 (9), p.1961-1970 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_884632249 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptive algorithm Adaptive algorithms Additive noise Additive white noise Algorithm design and analysis Algorithms Applied sciences AWGN Channel estimation Channels Computer simulation Detection, estimation, filtering, equalization, prediction Exact sciences and technology Gaussian noise Impulse response Information, signal and communications theory Least mean squares algorithm Least squares approximation Mean square error methods Noise Signal and communications theory Signal processing algorithms Signal, noise Studies Telecommunications and information theory Variance |
title | Noise-constrained least mean squares algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-constrained%20least%20mean%20squares%20algorithm&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Yongbin%20Wei&rft.date=2001-09-01&rft.volume=49&rft.issue=9&rft.spage=1961&rft.epage=1970&rft.pages=1961-1970&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.942625&rft_dat=%3Cproquest_cross%3E914653583%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-63481e986566890ad9c5ba28b0dc72454da5b2bb2674f8690f52ad4563aa0713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884632249&rft_id=info:pmid/&rft_ieee_id=942625&rfr_iscdi=true |