Loading…

Noise-constrained least mean squares algorithm

We consider the design of an adaptive algorithm for finite impulse response channel estimation, which incorporates partial knowledge of the channel, specifically, the additive noise variance. Although the noise variance is not required for the offline Wiener solution, there are potential benefits (a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2001-09, Vol.49 (9), p.1961-1970
Main Authors: Yongbin Wei, Gelfand, S.B., Krogmeier, J.V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-63481e986566890ad9c5ba28b0dc72454da5b2bb2674f8690f52ad4563aa0713
cites cdi_FETCH-LOGICAL-c462t-63481e986566890ad9c5ba28b0dc72454da5b2bb2674f8690f52ad4563aa0713
container_end_page 1970
container_issue 9
container_start_page 1961
container_title IEEE transactions on signal processing
container_volume 49
creator Yongbin Wei
Gelfand, S.B.
Krogmeier, J.V.
description We consider the design of an adaptive algorithm for finite impulse response channel estimation, which incorporates partial knowledge of the channel, specifically, the additive noise variance. Although the noise variance is not required for the offline Wiener solution, there are potential benefits (and limitations) for the learning behavior of an adaptive solution. In our approach, a Robbins-Monro algorithm is used to minimize the conventional mean square error criterion subject to a noise variance constraint and a penalty term necessary to guarantee uniqueness of the combined weight/multiplier solution. The resulting noise-constrained LMS (NCLMS) algorithm is a type of variable step-size LMS algorithm where the step-size rule arises naturally from the constraints. A convergence and performance analysis is carried out, and extensive simulations are conducted that compare NCLMS with several adaptive algorithms. This work also provides an appropriate framework for the derivation and analysis of other adaptive algorithms that incorporate partial knowledge of the channel.
doi_str_mv 10.1109/78.942625
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_884632249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>942625</ieee_id><sourcerecordid>914653583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-63481e986566890ad9c5ba28b0dc72454da5b2bb2674f8690f52ad4563aa0713</originalsourceid><addsrcrecordid>eNqF0TtLxEAQB_AgCp6nha1VEFEscu5j9lXK4QsOba6wWyabjebIJeduUvjtzZFDwUKrGZjf_GGYJDmlZEYpMTdKzwwwycReMqEGaEZAyf2hJ4JnQqvXw-QoxhUhFMDISTJ7bqvoM9c2sQtYNb5Ia4-xS9cemzR-9Bh8TLF-a0PVva-Pk4MS6-hPdnWaLO_vlvPHbPHy8DS_XWQOJOsyyUFTb7QUUmpDsDBO5Mh0TgqnGAgoUOQsz5lUUGppSCkYFiAkRySK8mlyNcZuQvvR-9jZdRWdr2tsfNtHayhIwYXmg7z8UzINwLUk_0OpheJkC89_wVXbh2a41moNkjMGZkDXI3KhjTH40m5CtcbwaSmx20dYpe34iMFe7AIxOqzLgI2r4s8C5UwbNbCzkVXe--_pLuMLZBmMrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884632249</pqid></control><display><type>article</type><title>Noise-constrained least mean squares algorithm</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yongbin Wei ; Gelfand, S.B. ; Krogmeier, J.V.</creator><creatorcontrib>Yongbin Wei ; Gelfand, S.B. ; Krogmeier, J.V.</creatorcontrib><description>We consider the design of an adaptive algorithm for finite impulse response channel estimation, which incorporates partial knowledge of the channel, specifically, the additive noise variance. Although the noise variance is not required for the offline Wiener solution, there are potential benefits (and limitations) for the learning behavior of an adaptive solution. In our approach, a Robbins-Monro algorithm is used to minimize the conventional mean square error criterion subject to a noise variance constraint and a penalty term necessary to guarantee uniqueness of the combined weight/multiplier solution. The resulting noise-constrained LMS (NCLMS) algorithm is a type of variable step-size LMS algorithm where the step-size rule arises naturally from the constraints. A convergence and performance analysis is carried out, and extensive simulations are conducted that compare NCLMS with several adaptive algorithms. This work also provides an appropriate framework for the derivation and analysis of other adaptive algorithms that incorporate partial knowledge of the channel.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.942625</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive algorithm ; Adaptive algorithms ; Additive noise ; Additive white noise ; Algorithm design and analysis ; Algorithms ; Applied sciences ; AWGN ; Channel estimation ; Channels ; Computer simulation ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Gaussian noise ; Impulse response ; Information, signal and communications theory ; Least mean squares algorithm ; Least squares approximation ; Mean square error methods ; Noise ; Signal and communications theory ; Signal processing algorithms ; Signal, noise ; Studies ; Telecommunications and information theory ; Variance</subject><ispartof>IEEE transactions on signal processing, 2001-09, Vol.49 (9), p.1961-1970</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-63481e986566890ad9c5ba28b0dc72454da5b2bb2674f8690f52ad4563aa0713</citedby><cites>FETCH-LOGICAL-c462t-63481e986566890ad9c5ba28b0dc72454da5b2bb2674f8690f52ad4563aa0713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/942625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1132897$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yongbin Wei</creatorcontrib><creatorcontrib>Gelfand, S.B.</creatorcontrib><creatorcontrib>Krogmeier, J.V.</creatorcontrib><title>Noise-constrained least mean squares algorithm</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We consider the design of an adaptive algorithm for finite impulse response channel estimation, which incorporates partial knowledge of the channel, specifically, the additive noise variance. Although the noise variance is not required for the offline Wiener solution, there are potential benefits (and limitations) for the learning behavior of an adaptive solution. In our approach, a Robbins-Monro algorithm is used to minimize the conventional mean square error criterion subject to a noise variance constraint and a penalty term necessary to guarantee uniqueness of the combined weight/multiplier solution. The resulting noise-constrained LMS (NCLMS) algorithm is a type of variable step-size LMS algorithm where the step-size rule arises naturally from the constraints. A convergence and performance analysis is carried out, and extensive simulations are conducted that compare NCLMS with several adaptive algorithms. This work also provides an appropriate framework for the derivation and analysis of other adaptive algorithms that incorporate partial knowledge of the channel.</description><subject>Adaptive algorithm</subject><subject>Adaptive algorithms</subject><subject>Additive noise</subject><subject>Additive white noise</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>AWGN</subject><subject>Channel estimation</subject><subject>Channels</subject><subject>Computer simulation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>Impulse response</subject><subject>Information, signal and communications theory</subject><subject>Least mean squares algorithm</subject><subject>Least squares approximation</subject><subject>Mean square error methods</subject><subject>Noise</subject><subject>Signal and communications theory</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Variance</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqF0TtLxEAQB_AgCp6nha1VEFEscu5j9lXK4QsOba6wWyabjebIJeduUvjtzZFDwUKrGZjf_GGYJDmlZEYpMTdKzwwwycReMqEGaEZAyf2hJ4JnQqvXw-QoxhUhFMDISTJ7bqvoM9c2sQtYNb5Ia4-xS9cemzR-9Bh8TLF-a0PVva-Pk4MS6-hPdnWaLO_vlvPHbPHy8DS_XWQOJOsyyUFTb7QUUmpDsDBO5Mh0TgqnGAgoUOQsz5lUUGppSCkYFiAkRySK8mlyNcZuQvvR-9jZdRWdr2tsfNtHayhIwYXmg7z8UzINwLUk_0OpheJkC89_wVXbh2a41moNkjMGZkDXI3KhjTH40m5CtcbwaSmx20dYpe34iMFe7AIxOqzLgI2r4s8C5UwbNbCzkVXe--_pLuMLZBmMrQ</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Yongbin Wei</creator><creator>Gelfand, S.B.</creator><creator>Krogmeier, J.V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010901</creationdate><title>Noise-constrained least mean squares algorithm</title><author>Yongbin Wei ; Gelfand, S.B. ; Krogmeier, J.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-63481e986566890ad9c5ba28b0dc72454da5b2bb2674f8690f52ad4563aa0713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adaptive algorithm</topic><topic>Adaptive algorithms</topic><topic>Additive noise</topic><topic>Additive white noise</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>AWGN</topic><topic>Channel estimation</topic><topic>Channels</topic><topic>Computer simulation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>Impulse response</topic><topic>Information, signal and communications theory</topic><topic>Least mean squares algorithm</topic><topic>Least squares approximation</topic><topic>Mean square error methods</topic><topic>Noise</topic><topic>Signal and communications theory</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yongbin Wei</creatorcontrib><creatorcontrib>Gelfand, S.B.</creatorcontrib><creatorcontrib>Krogmeier, J.V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yongbin Wei</au><au>Gelfand, S.B.</au><au>Krogmeier, J.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-constrained least mean squares algorithm</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2001-09-01</date><risdate>2001</risdate><volume>49</volume><issue>9</issue><spage>1961</spage><epage>1970</epage><pages>1961-1970</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We consider the design of an adaptive algorithm for finite impulse response channel estimation, which incorporates partial knowledge of the channel, specifically, the additive noise variance. Although the noise variance is not required for the offline Wiener solution, there are potential benefits (and limitations) for the learning behavior of an adaptive solution. In our approach, a Robbins-Monro algorithm is used to minimize the conventional mean square error criterion subject to a noise variance constraint and a penalty term necessary to guarantee uniqueness of the combined weight/multiplier solution. The resulting noise-constrained LMS (NCLMS) algorithm is a type of variable step-size LMS algorithm where the step-size rule arises naturally from the constraints. A convergence and performance analysis is carried out, and extensive simulations are conducted that compare NCLMS with several adaptive algorithms. This work also provides an appropriate framework for the derivation and analysis of other adaptive algorithms that incorporate partial knowledge of the channel.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.942625</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2001-09, Vol.49 (9), p.1961-1970
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_884632249
source IEEE Electronic Library (IEL) Journals
subjects Adaptive algorithm
Adaptive algorithms
Additive noise
Additive white noise
Algorithm design and analysis
Algorithms
Applied sciences
AWGN
Channel estimation
Channels
Computer simulation
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Gaussian noise
Impulse response
Information, signal and communications theory
Least mean squares algorithm
Least squares approximation
Mean square error methods
Noise
Signal and communications theory
Signal processing algorithms
Signal, noise
Studies
Telecommunications and information theory
Variance
title Noise-constrained least mean squares algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-constrained%20least%20mean%20squares%20algorithm&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Yongbin%20Wei&rft.date=2001-09-01&rft.volume=49&rft.issue=9&rft.spage=1961&rft.epage=1970&rft.pages=1961-1970&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.942625&rft_dat=%3Cproquest_cross%3E914653583%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-63481e986566890ad9c5ba28b0dc72454da5b2bb2674f8690f52ad4563aa0713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884632249&rft_id=info:pmid/&rft_ieee_id=942625&rfr_iscdi=true