Loading…
Multiassignment for tracking a large number of overlapping objects [and application to fibroblast cells]
In this paper we present a new technique for data association using multiassignment for tracking a large number of closely spaced (and overlapping) objects. The algorithm is illustrated on a biomedical problem, namely the tracking of a group of fibroblast (tissue) cells from an image sequence, which...
Saved in:
Published in: | IEEE transactions on aerospace and electronic systems 2001-01, Vol.37 (1), p.2-21 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we present a new technique for data association using multiassignment for tracking a large number of closely spaced (and overlapping) objects. The algorithm is illustrated on a biomedical problem, namely the tracking of a group of fibroblast (tissue) cells from an image sequence, which motivated this work. Because of their proximity to one another and due to the difficulties in segmenting the images accurately from a poor-quality image sequence, the cells are effectively closely spaced objects (CSOs). The algorithm presents a novel dichotomous, iterated approach to multiassignment using successive one-to-one assignments of decreasing size with modified costs. The cost functions, which are adjusted depending on the "depth" of the current assignment level and on the tracking results, are derived. The resulting assignments are used to form, maintain and terminate tracks with a modified version of the probabilistic data association (PDA) filter, which can handle the contention for a single measurement among multiple tracks in addition to the association of multiple measurements to a single track. Estimation results are given and compared with those of the standard 2D one-to-one assignment algorithm. It is shown that iterated multiassignment results in superior measurement-to-track association. The algorithms presented can be used for other general tracking problems, including dense air traffic surveillance and control. |
---|---|
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/7.913664 |