Loading…

Habitability of super-Earth planets around main-sequence stars including red giant branch evolution: models based on the integrated system approach

In a previous study published in Astrobiology, we focused on the evolution of habitability of a 10 M⊕ super-Earth planet orbiting a star akin to the Sun. This study was based on a concept of planetary habitability in accordance with the integrated system approach that describes the photosynthetic bi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of astrobiology 2012-01, Vol.11 (1), p.15-23
Main Authors: Cuntz, M., von Bloh, W., Schröder, K.-P., Bounama, C., Franck, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a previous study published in Astrobiology, we focused on the evolution of habitability of a 10 M⊕ super-Earth planet orbiting a star akin to the Sun. This study was based on a concept of planetary habitability in accordance with the integrated system approach that describes the photosynthetic biomass production taking into account a variety of climatological, biogeochemical and geodynamical processes. In the present study, we pursue a significant augmentation of our previous work by considering stars with zero-age main-sequence masses between 0.5 and 2.0 M⊙ with special emphasis on models of 0.8, 0.9, 1.2 and 1.5 M⊙. Our models of habitability consider geodynamical processes during the main-sequence stage of these stars as well as during their red giant branch evolution. Pertaining to the different types of stars, we identify the so-called photosynthesis-sustaining habitable zone (pHZ) determined by the limits of biological productivity on the planetary surface. We obtain various sets of solutions consistent with the principal possibility of life. Considering that stars of relatively high masses depart from the main-sequence much earlier than low-mass stars, it is found that the biospheric lifespan of super-Earth planets of stars with masses above approximately 1.5 M⊙ is always limited by the increase in stellar luminosity. However, for stars with masses below 0.9 M⊙, the lifespan of super-Earths is solely determined by the geodynamic timescale. For central star masses between 0.9 and 1.5 M⊙, the possibility of life in the framework of our models depends on the relative continental area of the super-Earth planet.
ISSN:1473-5504
1475-3006
DOI:10.1017/S1473550411000280