Loading…
On the Accuracy and Stability of Several Widely Used FDTD Approaches for Modeling Lorentz Dielectrics
A rigorous and comparative study on the approximation accuracy and stability limits of several widely used finite-difference time-domain (FDTD) approaches, namely the auxiliary differential equation (ADE) approach, the bilinear transform (BT) approach, the Z-transform approach (ZT) and the piecewise...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2009-10, Vol.57 (10), p.3378-3381 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-e164649a356bbc54eb25105fe988db7ff4c6516e56889727a484bb020f6024a63 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-e164649a356bbc54eb25105fe988db7ff4c6516e56889727a484bb020f6024a63 |
container_end_page | 3381 |
container_issue | 10 |
container_start_page | 3378 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 57 |
creator | Lin, Zhili Thylen, Lars |
description | A rigorous and comparative study on the approximation accuracy and stability limits of several widely used finite-difference time-domain (FDTD) approaches, namely the auxiliary differential equation (ADE) approach, the bilinear transform (BT) approach, the Z-transform approach (ZT) and the piecewise linear recursive convolution (PLRC) approach, for modeling dispersive Lorentz dielectrics is presented following the given updating equations between the electric flux density and the electric field intensity. We find the ZT approach with modified material parameters is much more accurate than the original ZT approach and the other three approaches for modeling Lorentz dielectrics. The stability limits of the ADE, ZT and PLRC approaches in simulating Lorentz dielectrics are also shown to be a bit more stringent than that of BT approach which preserves the Courant stability limit as previously reported. |
doi_str_mv | 10.1109/TAP.2009.2029383 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_912371486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5196761</ieee_id><sourcerecordid>1671454222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-e164649a356bbc54eb25105fe988db7ff4c6516e56889727a484bb020f6024a63</originalsourceid><addsrcrecordid>eNpdkc9rFDEUx4MouFbvgpcgCB46bZJJMslx6LZV2FKhW_UWMtmXbup0siYzlfWvN8sue_CSR3if9-P7vgi9p-SMUqLPl-23M0aILg_TtapfoBkVQlWMMfoSzQihqtJM_nyN3uT8WL5ccT5DcDvgcQ24dW5K1m2xHVb4brRd6MO4xdHjO3iGZHv8I6yg3-L7DCt8NV_OcbvZpGjdGjL2MeGbWPJheMCLmGAY_-J5gB7cmILLb9Erb_sM7w7xBN1fXS4vvlSL2-uvF-2iclzIsQIqueTa1kJ2nRMcOiYoER60Uquu8Z47KagEIZXSDWts0dB1hBEvCeNW1ifodN83_4HN1JlNCk82bU20wczD99bE9GB-jWtDlZKk4J_3eBHye4I8mqeQHfS9HSBO2VDZUC54OWFBP_6HPsYpDUWM0ZTVhVO78WQPuRRzTuCPC1Bidi6Z4pLZuWQOLpWST4e-Njvb-2QHF_KxjhVYcrVb9cOeCwBwTAuqZSNp_Q9_J5kC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912371486</pqid></control><display><type>article</type><title>On the Accuracy and Stability of Several Widely Used FDTD Approaches for Modeling Lorentz Dielectrics</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lin, Zhili ; Thylen, Lars</creator><creatorcontrib>Lin, Zhili ; Thylen, Lars</creatorcontrib><description>A rigorous and comparative study on the approximation accuracy and stability limits of several widely used finite-difference time-domain (FDTD) approaches, namely the auxiliary differential equation (ADE) approach, the bilinear transform (BT) approach, the Z-transform approach (ZT) and the piecewise linear recursive convolution (PLRC) approach, for modeling dispersive Lorentz dielectrics is presented following the given updating equations between the electric flux density and the electric field intensity. We find the ZT approach with modified material parameters is much more accurate than the original ZT approach and the other three approaches for modeling Lorentz dielectrics. The stability limits of the ADE, ZT and PLRC approaches in simulating Lorentz dielectrics are also shown to be a bit more stringent than that of BT approach which preserves the Courant stability limit as previously reported.</description><identifier>ISSN: 0018-926X</identifier><identifier>ISSN: 1558-2221</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2009.2029383</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Applied classical electromagnetism ; Convolution ; Density ; Dielectrics ; Differential equations ; Dispersion ; dispersive media ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Finite difference methods ; Finite difference time domain method ; finite-difference ; Finite-difference time domain (FDTD) methods ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; metamaterials ; numerical ; numerical stability ; permittivity ; Physics ; Piecewise linear approximation ; Piecewise linear techniques ; Preserves ; propagation ; Stability ; Time domain analysis ; Transforms</subject><ispartof>IEEE transactions on antennas and propagation, 2009-10, Vol.57 (10), p.3378-3381</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-e164649a356bbc54eb25105fe988db7ff4c6516e56889727a484bb020f6024a63</citedby><cites>FETCH-LOGICAL-c456t-e164649a356bbc54eb25105fe988db7ff4c6516e56889727a484bb020f6024a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5196761$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22006480$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-18860$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Zhili</creatorcontrib><creatorcontrib>Thylen, Lars</creatorcontrib><title>On the Accuracy and Stability of Several Widely Used FDTD Approaches for Modeling Lorentz Dielectrics</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>A rigorous and comparative study on the approximation accuracy and stability limits of several widely used finite-difference time-domain (FDTD) approaches, namely the auxiliary differential equation (ADE) approach, the bilinear transform (BT) approach, the Z-transform approach (ZT) and the piecewise linear recursive convolution (PLRC) approach, for modeling dispersive Lorentz dielectrics is presented following the given updating equations between the electric flux density and the electric field intensity. We find the ZT approach with modified material parameters is much more accurate than the original ZT approach and the other three approaches for modeling Lorentz dielectrics. The stability limits of the ADE, ZT and PLRC approaches in simulating Lorentz dielectrics are also shown to be a bit more stringent than that of BT approach which preserves the Courant stability limit as previously reported.</description><subject>Accuracy</subject><subject>Applied classical electromagnetism</subject><subject>Convolution</subject><subject>Density</subject><subject>Dielectrics</subject><subject>Differential equations</subject><subject>Dispersion</subject><subject>dispersive media</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>finite-difference</subject><subject>Finite-difference time domain (FDTD) methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>metamaterials</subject><subject>numerical</subject><subject>numerical stability</subject><subject>permittivity</subject><subject>Physics</subject><subject>Piecewise linear approximation</subject><subject>Piecewise linear techniques</subject><subject>Preserves</subject><subject>propagation</subject><subject>Stability</subject><subject>Time domain analysis</subject><subject>Transforms</subject><issn>0018-926X</issn><issn>1558-2221</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdkc9rFDEUx4MouFbvgpcgCB46bZJJMslx6LZV2FKhW_UWMtmXbup0siYzlfWvN8sue_CSR3if9-P7vgi9p-SMUqLPl-23M0aILg_TtapfoBkVQlWMMfoSzQihqtJM_nyN3uT8WL5ccT5DcDvgcQ24dW5K1m2xHVb4brRd6MO4xdHjO3iGZHv8I6yg3-L7DCt8NV_OcbvZpGjdGjL2MeGbWPJheMCLmGAY_-J5gB7cmILLb9Erb_sM7w7xBN1fXS4vvlSL2-uvF-2iclzIsQIqueTa1kJ2nRMcOiYoER60Uquu8Z47KagEIZXSDWts0dB1hBEvCeNW1ifodN83_4HN1JlNCk82bU20wczD99bE9GB-jWtDlZKk4J_3eBHye4I8mqeQHfS9HSBO2VDZUC54OWFBP_6HPsYpDUWM0ZTVhVO78WQPuRRzTuCPC1Bidi6Z4pLZuWQOLpWST4e-Njvb-2QHF_KxjhVYcrVb9cOeCwBwTAuqZSNp_Q9_J5kC</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Lin, Zhili</creator><creator>Thylen, Lars</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20091001</creationdate><title>On the Accuracy and Stability of Several Widely Used FDTD Approaches for Modeling Lorentz Dielectrics</title><author>Lin, Zhili ; Thylen, Lars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-e164649a356bbc54eb25105fe988db7ff4c6516e56889727a484bb020f6024a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Applied classical electromagnetism</topic><topic>Convolution</topic><topic>Density</topic><topic>Dielectrics</topic><topic>Differential equations</topic><topic>Dispersion</topic><topic>dispersive media</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>finite-difference</topic><topic>Finite-difference time domain (FDTD) methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>metamaterials</topic><topic>numerical</topic><topic>numerical stability</topic><topic>permittivity</topic><topic>Physics</topic><topic>Piecewise linear approximation</topic><topic>Piecewise linear techniques</topic><topic>Preserves</topic><topic>propagation</topic><topic>Stability</topic><topic>Time domain analysis</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Zhili</creatorcontrib><creatorcontrib>Thylen, Lars</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Zhili</au><au>Thylen, Lars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Accuracy and Stability of Several Widely Used FDTD Approaches for Modeling Lorentz Dielectrics</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>57</volume><issue>10</issue><spage>3378</spage><epage>3381</epage><pages>3378-3381</pages><issn>0018-926X</issn><issn>1558-2221</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>A rigorous and comparative study on the approximation accuracy and stability limits of several widely used finite-difference time-domain (FDTD) approaches, namely the auxiliary differential equation (ADE) approach, the bilinear transform (BT) approach, the Z-transform approach (ZT) and the piecewise linear recursive convolution (PLRC) approach, for modeling dispersive Lorentz dielectrics is presented following the given updating equations between the electric flux density and the electric field intensity. We find the ZT approach with modified material parameters is much more accurate than the original ZT approach and the other three approaches for modeling Lorentz dielectrics. The stability limits of the ADE, ZT and PLRC approaches in simulating Lorentz dielectrics are also shown to be a bit more stringent than that of BT approach which preserves the Courant stability limit as previously reported.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2009.2029383</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2009-10, Vol.57 (10), p.3378-3381 |
issn | 0018-926X 1558-2221 1558-2221 |
language | eng |
recordid | cdi_proquest_journals_912371486 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy Applied classical electromagnetism Convolution Density Dielectrics Differential equations Dispersion dispersive media Electromagnetic wave propagation, radiowave propagation Electromagnetism electron and ion optics Exact sciences and technology Finite difference methods Finite difference time domain method finite-difference Finite-difference time domain (FDTD) methods Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical models metamaterials numerical numerical stability permittivity Physics Piecewise linear approximation Piecewise linear techniques Preserves propagation Stability Time domain analysis Transforms |
title | On the Accuracy and Stability of Several Widely Used FDTD Approaches for Modeling Lorentz Dielectrics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Accuracy%20and%20Stability%20of%20Several%20Widely%20Used%20FDTD%20Approaches%20for%20Modeling%20Lorentz%20Dielectrics&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Lin,%20Zhili&rft.date=2009-10-01&rft.volume=57&rft.issue=10&rft.spage=3378&rft.epage=3381&rft.pages=3378-3381&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2009.2029383&rft_dat=%3Cproquest_ieee_%3E1671454222%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-e164649a356bbc54eb25105fe988db7ff4c6516e56889727a484bb020f6024a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912371486&rft_id=info:pmid/&rft_ieee_id=5196761&rfr_iscdi=true |