Loading…

On the Accuracy and Stability of Several Widely Used FDTD Approaches for Modeling Lorentz Dielectrics

A rigorous and comparative study on the approximation accuracy and stability limits of several widely used finite-difference time-domain (FDTD) approaches, namely the auxiliary differential equation (ADE) approach, the bilinear transform (BT) approach, the Z-transform approach (ZT) and the piecewise...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2009-10, Vol.57 (10), p.3378-3381
Main Authors: Lin, Zhili, Thylen, Lars
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-e164649a356bbc54eb25105fe988db7ff4c6516e56889727a484bb020f6024a63
cites cdi_FETCH-LOGICAL-c456t-e164649a356bbc54eb25105fe988db7ff4c6516e56889727a484bb020f6024a63
container_end_page 3381
container_issue 10
container_start_page 3378
container_title IEEE transactions on antennas and propagation
container_volume 57
creator Lin, Zhili
Thylen, Lars
description A rigorous and comparative study on the approximation accuracy and stability limits of several widely used finite-difference time-domain (FDTD) approaches, namely the auxiliary differential equation (ADE) approach, the bilinear transform (BT) approach, the Z-transform approach (ZT) and the piecewise linear recursive convolution (PLRC) approach, for modeling dispersive Lorentz dielectrics is presented following the given updating equations between the electric flux density and the electric field intensity. We find the ZT approach with modified material parameters is much more accurate than the original ZT approach and the other three approaches for modeling Lorentz dielectrics. The stability limits of the ADE, ZT and PLRC approaches in simulating Lorentz dielectrics are also shown to be a bit more stringent than that of BT approach which preserves the Courant stability limit as previously reported.
doi_str_mv 10.1109/TAP.2009.2029383
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_912371486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5196761</ieee_id><sourcerecordid>1671454222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-e164649a356bbc54eb25105fe988db7ff4c6516e56889727a484bb020f6024a63</originalsourceid><addsrcrecordid>eNpdkc9rFDEUx4MouFbvgpcgCB46bZJJMslx6LZV2FKhW_UWMtmXbup0siYzlfWvN8sue_CSR3if9-P7vgi9p-SMUqLPl-23M0aILg_TtapfoBkVQlWMMfoSzQihqtJM_nyN3uT8WL5ccT5DcDvgcQ24dW5K1m2xHVb4brRd6MO4xdHjO3iGZHv8I6yg3-L7DCt8NV_OcbvZpGjdGjL2MeGbWPJheMCLmGAY_-J5gB7cmILLb9Erb_sM7w7xBN1fXS4vvlSL2-uvF-2iclzIsQIqueTa1kJ2nRMcOiYoER60Uquu8Z47KagEIZXSDWts0dB1hBEvCeNW1ifodN83_4HN1JlNCk82bU20wczD99bE9GB-jWtDlZKk4J_3eBHye4I8mqeQHfS9HSBO2VDZUC54OWFBP_6HPsYpDUWM0ZTVhVO78WQPuRRzTuCPC1Bidi6Z4pLZuWQOLpWST4e-Njvb-2QHF_KxjhVYcrVb9cOeCwBwTAuqZSNp_Q9_J5kC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912371486</pqid></control><display><type>article</type><title>On the Accuracy and Stability of Several Widely Used FDTD Approaches for Modeling Lorentz Dielectrics</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lin, Zhili ; Thylen, Lars</creator><creatorcontrib>Lin, Zhili ; Thylen, Lars</creatorcontrib><description>A rigorous and comparative study on the approximation accuracy and stability limits of several widely used finite-difference time-domain (FDTD) approaches, namely the auxiliary differential equation (ADE) approach, the bilinear transform (BT) approach, the Z-transform approach (ZT) and the piecewise linear recursive convolution (PLRC) approach, for modeling dispersive Lorentz dielectrics is presented following the given updating equations between the electric flux density and the electric field intensity. We find the ZT approach with modified material parameters is much more accurate than the original ZT approach and the other three approaches for modeling Lorentz dielectrics. The stability limits of the ADE, ZT and PLRC approaches in simulating Lorentz dielectrics are also shown to be a bit more stringent than that of BT approach which preserves the Courant stability limit as previously reported.</description><identifier>ISSN: 0018-926X</identifier><identifier>ISSN: 1558-2221</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2009.2029383</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Applied classical electromagnetism ; Convolution ; Density ; Dielectrics ; Differential equations ; Dispersion ; dispersive media ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Finite difference methods ; Finite difference time domain method ; finite-difference ; Finite-difference time domain (FDTD) methods ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; metamaterials ; numerical ; numerical stability ; permittivity ; Physics ; Piecewise linear approximation ; Piecewise linear techniques ; Preserves ; propagation ; Stability ; Time domain analysis ; Transforms</subject><ispartof>IEEE transactions on antennas and propagation, 2009-10, Vol.57 (10), p.3378-3381</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-e164649a356bbc54eb25105fe988db7ff4c6516e56889727a484bb020f6024a63</citedby><cites>FETCH-LOGICAL-c456t-e164649a356bbc54eb25105fe988db7ff4c6516e56889727a484bb020f6024a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5196761$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22006480$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-18860$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Zhili</creatorcontrib><creatorcontrib>Thylen, Lars</creatorcontrib><title>On the Accuracy and Stability of Several Widely Used FDTD Approaches for Modeling Lorentz Dielectrics</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>A rigorous and comparative study on the approximation accuracy and stability limits of several widely used finite-difference time-domain (FDTD) approaches, namely the auxiliary differential equation (ADE) approach, the bilinear transform (BT) approach, the Z-transform approach (ZT) and the piecewise linear recursive convolution (PLRC) approach, for modeling dispersive Lorentz dielectrics is presented following the given updating equations between the electric flux density and the electric field intensity. We find the ZT approach with modified material parameters is much more accurate than the original ZT approach and the other three approaches for modeling Lorentz dielectrics. The stability limits of the ADE, ZT and PLRC approaches in simulating Lorentz dielectrics are also shown to be a bit more stringent than that of BT approach which preserves the Courant stability limit as previously reported.</description><subject>Accuracy</subject><subject>Applied classical electromagnetism</subject><subject>Convolution</subject><subject>Density</subject><subject>Dielectrics</subject><subject>Differential equations</subject><subject>Dispersion</subject><subject>dispersive media</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>finite-difference</subject><subject>Finite-difference time domain (FDTD) methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>metamaterials</subject><subject>numerical</subject><subject>numerical stability</subject><subject>permittivity</subject><subject>Physics</subject><subject>Piecewise linear approximation</subject><subject>Piecewise linear techniques</subject><subject>Preserves</subject><subject>propagation</subject><subject>Stability</subject><subject>Time domain analysis</subject><subject>Transforms</subject><issn>0018-926X</issn><issn>1558-2221</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdkc9rFDEUx4MouFbvgpcgCB46bZJJMslx6LZV2FKhW_UWMtmXbup0siYzlfWvN8sue_CSR3if9-P7vgi9p-SMUqLPl-23M0aILg_TtapfoBkVQlWMMfoSzQihqtJM_nyN3uT8WL5ccT5DcDvgcQ24dW5K1m2xHVb4brRd6MO4xdHjO3iGZHv8I6yg3-L7DCt8NV_OcbvZpGjdGjL2MeGbWPJheMCLmGAY_-J5gB7cmILLb9Erb_sM7w7xBN1fXS4vvlSL2-uvF-2iclzIsQIqueTa1kJ2nRMcOiYoER60Uquu8Z47KagEIZXSDWts0dB1hBEvCeNW1ifodN83_4HN1JlNCk82bU20wczD99bE9GB-jWtDlZKk4J_3eBHye4I8mqeQHfS9HSBO2VDZUC54OWFBP_6HPsYpDUWM0ZTVhVO78WQPuRRzTuCPC1Bidi6Z4pLZuWQOLpWST4e-Njvb-2QHF_KxjhVYcrVb9cOeCwBwTAuqZSNp_Q9_J5kC</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Lin, Zhili</creator><creator>Thylen, Lars</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20091001</creationdate><title>On the Accuracy and Stability of Several Widely Used FDTD Approaches for Modeling Lorentz Dielectrics</title><author>Lin, Zhili ; Thylen, Lars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-e164649a356bbc54eb25105fe988db7ff4c6516e56889727a484bb020f6024a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Applied classical electromagnetism</topic><topic>Convolution</topic><topic>Density</topic><topic>Dielectrics</topic><topic>Differential equations</topic><topic>Dispersion</topic><topic>dispersive media</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>finite-difference</topic><topic>Finite-difference time domain (FDTD) methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>metamaterials</topic><topic>numerical</topic><topic>numerical stability</topic><topic>permittivity</topic><topic>Physics</topic><topic>Piecewise linear approximation</topic><topic>Piecewise linear techniques</topic><topic>Preserves</topic><topic>propagation</topic><topic>Stability</topic><topic>Time domain analysis</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Zhili</creatorcontrib><creatorcontrib>Thylen, Lars</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Zhili</au><au>Thylen, Lars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Accuracy and Stability of Several Widely Used FDTD Approaches for Modeling Lorentz Dielectrics</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>57</volume><issue>10</issue><spage>3378</spage><epage>3381</epage><pages>3378-3381</pages><issn>0018-926X</issn><issn>1558-2221</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>A rigorous and comparative study on the approximation accuracy and stability limits of several widely used finite-difference time-domain (FDTD) approaches, namely the auxiliary differential equation (ADE) approach, the bilinear transform (BT) approach, the Z-transform approach (ZT) and the piecewise linear recursive convolution (PLRC) approach, for modeling dispersive Lorentz dielectrics is presented following the given updating equations between the electric flux density and the electric field intensity. We find the ZT approach with modified material parameters is much more accurate than the original ZT approach and the other three approaches for modeling Lorentz dielectrics. The stability limits of the ADE, ZT and PLRC approaches in simulating Lorentz dielectrics are also shown to be a bit more stringent than that of BT approach which preserves the Courant stability limit as previously reported.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2009.2029383</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2009-10, Vol.57 (10), p.3378-3381
issn 0018-926X
1558-2221
1558-2221
language eng
recordid cdi_proquest_journals_912371486
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Applied classical electromagnetism
Convolution
Density
Dielectrics
Differential equations
Dispersion
dispersive media
Electromagnetic wave propagation, radiowave propagation
Electromagnetism
electron and ion optics
Exact sciences and technology
Finite difference methods
Finite difference time domain method
finite-difference
Finite-difference time domain (FDTD) methods
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematical models
metamaterials
numerical
numerical stability
permittivity
Physics
Piecewise linear approximation
Piecewise linear techniques
Preserves
propagation
Stability
Time domain analysis
Transforms
title On the Accuracy and Stability of Several Widely Used FDTD Approaches for Modeling Lorentz Dielectrics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Accuracy%20and%20Stability%20of%20Several%20Widely%20Used%20FDTD%20Approaches%20for%20Modeling%20Lorentz%20Dielectrics&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Lin,%20Zhili&rft.date=2009-10-01&rft.volume=57&rft.issue=10&rft.spage=3378&rft.epage=3381&rft.pages=3378-3381&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2009.2029383&rft_dat=%3Cproquest_ieee_%3E1671454222%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-e164649a356bbc54eb25105fe988db7ff4c6516e56889727a484bb020f6024a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912371486&rft_id=info:pmid/&rft_ieee_id=5196761&rfr_iscdi=true