Loading…

From Individual to Collective Behavior in Bacterial Chemotaxis

Bacterial chemotaxis is widely studied from both the microscopic (cell) and macroscopic (population) points of view, and here we connect these very different levels of description by deriving the classical macroscopic description for chemotaxis from a microscopic model of the behavior of individual...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on applied mathematics 2004-01, Vol.65 (2), p.361-391
Main Authors: Radek Erban, Othmer, Hans G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bacterial chemotaxis is widely studied from both the microscopic (cell) and macroscopic (population) points of view, and here we connect these very different levels of description by deriving the classical macroscopic description for chemotaxis from a microscopic model of the behavior of individual cells. The analysis is based on the velocity jump process for describing the motion of individuals such as bacteria, wherein each individual carries an internal state that evolves according to a system of ordinary differential equations forced by a time- and/or space-dependent external signal. In the problem treated here the turning rate of individuals is a functional of the internal state, which in turn depends on the external signal. Using moment closure techniques in one space dimension, we derive and analyze a macroscopic system of hyperbolic differential equations describing this velocity jump process. Using a hyperbolic scaling of space and time, we obtain a single second-order hyperbolic equation for the population density, and using a parabolic scaling, we obtain the classical chemotaxis equation, wherein the chemotactic sensitivity is now a known function of parameters of the internal dynamics. Numerical simulations show that the solutions of the macroscopic equations agree very well with the results of Monte Carlo simulations of individual movement.
ISSN:0036-1399
1095-712X
DOI:10.1137/s0036139903433232