Loading…
A Class of Inexact Variable Metric Proximal Point Algorithms
For the problem of solving maximal monotone inclusions, we present a rather general class of algorithms, which contains hybrid inexact proximal point methods as a special case and allows for the use of a variable metric in subproblems. The global convergence and local linear rate of convergence are...
Saved in:
Published in: | SIAM journal on optimization 2008-01, Vol.19 (1), p.240-260 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For the problem of solving maximal monotone inclusions, we present a rather general class of algorithms, which contains hybrid inexact proximal point methods as a special case and allows for the use of a variable metric in subproblems. The global convergence and local linear rate of convergence are established under standard assumptions. We demonstrate the advantage of variable metric implementation in the case of solving systems of smooth monotone equations by the proximal Newton method. |
---|---|
ISSN: | 1052-6234 1095-7189 |
DOI: | 10.1137/070688146 |