Loading…
An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems
The anisotropic error indicator presented in [M. Picasso, Comm. Numer. Methods Engrg., 19 (2003), pp. 13--23.] in the frame of the Laplace equation is extended to elliptic and parabolic problems. Our error indicator is derived using the anisotropic interpolation estimates of [L. Formaggia and S. Per...
Saved in:
Published in: | SIAM journal on scientific computing 2003, Vol.24 (4), p.1328-1355 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The anisotropic error indicator presented in [M. Picasso, Comm. Numer. Methods Engrg., 19 (2003), pp. 13--23.] in the frame of the Laplace equation is extended to elliptic and parabolic problems. Our error indicator is derived using the anisotropic interpolation estimates of [L. Formaggia and S. Perotto, Numer. Math., 89 (2001), pp. 641--667; L. Formaggia and S. Perotto, Numer. Math., (2002), DOI 10.1007/s002110200415], together with a Zienkiewicz--Zhu error estimator to approach the error gradient. A numerical study of the effectivity index is proposed for elliptic, diffusion-convection, and parabolic problems. An adaptive algorithm is implemented, aimed at controlling the relative estimated error. |
---|---|
ISSN: | 1064-8275 1095-7197 |
DOI: | 10.1137/S1064827501398578 |