Loading…

An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems

The anisotropic error indicator presented in [M. Picasso, Comm. Numer. Methods Engrg., 19 (2003), pp. 13--23.] in the frame of the Laplace equation is extended to elliptic and parabolic problems. Our error indicator is derived using the anisotropic interpolation estimates of [L. Formaggia and S. Per...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on scientific computing 2003, Vol.24 (4), p.1328-1355
Main Author: PICASSO, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The anisotropic error indicator presented in [M. Picasso, Comm. Numer. Methods Engrg., 19 (2003), pp. 13--23.] in the frame of the Laplace equation is extended to elliptic and parabolic problems. Our error indicator is derived using the anisotropic interpolation estimates of [L. Formaggia and S. Perotto, Numer. Math., 89 (2001), pp. 641--667; L. Formaggia and S. Perotto, Numer. Math., (2002), DOI 10.1007/s002110200415], together with a Zienkiewicz--Zhu error estimator to approach the error gradient. A numerical study of the effectivity index is proposed for elliptic, diffusion-convection, and parabolic problems. An adaptive algorithm is implemented, aimed at controlling the relative estimated error.
ISSN:1064-8275
1095-7197
DOI:10.1137/S1064827501398578