Loading…
A BLAS-3 version of the QR factorization with column pivoting
The QR factorization with column pivoting (QRP), originally suggested by Golub [Numer. Math., 7 (1965), 206--216], is a popular approach to computing rank-revealing factorizations. Using Level 1 BLAS, it was implemented in LINPACK, and, using Level 2 BLAS, in LAPACK. While the Level 2 BLAS version d...
Saved in:
Published in: | SIAM journal on scientific computing 1998-09, Vol.19 (5), p.1486-1494 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The QR factorization with column pivoting (QRP), originally suggested by Golub [Numer. Math., 7 (1965), 206--216], is a popular approach to computing rank-revealing factorizations. Using Level 1 BLAS, it was implemented in LINPACK, and, using Level 2 BLAS, in LAPACK. While the Level 2 BLAS version delivers superior performance in general, it may result in worse performance for large matrix sizes due to cache effects. We introduce a modification of the QRP algorithm which allows the use of Level 3 BLAS kernels while maintaining the numerical behavior of the LINPACK and LAPACK implementations. Experimental comparisons of this approach with the LINPACK and LAPACK implementations on IBM RS/6000, SGI R8000, and DEC AXP platforms show considerable performance improvements. |
---|---|
ISSN: | 1064-8275 1095-7197 |
DOI: | 10.1137/S1064827595296732 |