Loading…

REHABILITATION OF THE LOWEST-ORDER RAVIART–THOMAS ELEMENT ON QUADRILATERAL GRIDS

A recent study [D. N. Arnold, D. Boffi, and R. S. Falk, SIAM J. Numer. Anal., 42 (2005), pp. 2429-2451] reveals that convergence of finite element methods using H(div, Ω)-compatible finite element spaces deteriorates on nonaffine quadrilateral grids. This phenomena is particularly troublesome for th...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on numerical analysis 2008-01, Vol.47 (1), p.487-507
Main Authors: BOCHEV, PAVEL B., RIDZAL, DENIS
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A recent study [D. N. Arnold, D. Boffi, and R. S. Falk, SIAM J. Numer. Anal., 42 (2005), pp. 2429-2451] reveals that convergence of finite element methods using H(div, Ω)-compatible finite element spaces deteriorates on nonaffine quadrilateral grids. This phenomena is particularly troublesome for the lowest-order Raviart–Thomas elements, because it implies loss of convergence in some norms for finite element solutions of mixed and least-squares methods. In this paper we propose reformulation of finite element methods, based on the natural mimetic divergence operator [M. Shashkov, Conservative Finite Difference Methods on General Grids, CRC Press, Boca Raton, FL, 1996], which restores the order of convergence. Reformulations of mixed Galerkin and least-squares methods for the Darcy equation illustrate our approach. We prove that reformulated methods converge optimally with respect to a norm involving the mimetic divergence operator. Furthermore, we prove that standard and reformulated versions of the mixed Galerkin method lead to identical linear systems, but the two versions of the least-squares method are veritably different. The surprising conclusion is that the degradation of convergence in the mixed method on nonaffine quadrilateral grids is superficial, and that the lowest-order Raviart–Thomas elements are safe to use in this method. However, the breakdown in the least-squares method is real, and there one should use our proposed reformulation.
ISSN:0036-1429
1095-7170
DOI:10.1137/070704265