Loading…
Error Estimate and the Geometric Corrector for the Upwind Finite Volume Method Applied to the Linear Advection Equation
This paper deals with the upwind finite volume method applied to the linear advection equation on a bounded domain and with natural boundary conditions. We introduce what we call the geometric corrector, which is a sequence associated with every finite volume mesh in $\mathbf{R}^{nd}$ and every nonv...
Saved in:
Published in: | SIAM journal on numerical analysis 2005-01, Vol.43 (2), p.578-603 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with the upwind finite volume method applied to the linear advection equation on a bounded domain and with natural boundary conditions. We introduce what we call the geometric corrector, which is a sequence associated with every finite volume mesh in $\mathbf{R}^{nd}$ and every nonvanishing vector $\mathbf{a}$ of $\mathbf{R}^{nd}$. First we show that if the continuous solution is regular enough and if the norm of this corrector is bounded by the mesh size, then an order one error estimate for thefinite volume scheme occurs. Afterwards we prove that this norm is indeed bounded by the mesh size in several cases, including the one where an arbitrary coarse conformal triangular mesh is uniformly refined in two dimensions. Computing numerically exactly this corrector allows us to state that this result might be extended under conditions to more general cases, such as the one with independent refined meshes. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/040605941 |